K-schur functions and affine Schubert calculus / Thomas Lam [and others].

Format
Book
Language
English
Published/​Created
New York : Springer, ©2014.
Description
viii, 219 pages ; 25 cm

Details

Subject(s)
Series
Summary note
  • This book gives an introduction to the very active field of combinatorics of affine Schubert calculus, explains the current state of the art, and states the current open problems. Affine Schubert calculus lies at the crossroads of combinatorics, geometry, and representation theory. Its modern development is motivated by two seemingly unrelated directions. One is the introduction of k-Schur functions in the study of Macdonald polynomial positivity, a mostly combinatorial branch of symmetric function theory. The other direction is the study of the Schubert bases of the (co)homology of the affine Grassmannian, an algebro-topological formulation of a problem in enumerative geometry.
  • This is the first introductory text on this subject. It contains many examples in Sage, a free open source general purpose mathematical software system, to entice the reader to investigate the open problems. This book is written for advanced undergraduate and graduate students, as well as researchers, who want to become familiar with this fascinating new field."--Pub. desc.
Bibliographic references
Includes bibliographical references.
Contents
  • 1. Introduction
  • 2. Primer on k-Schur Functions
  • 3. Stanley symmetric functions and Peterson algebras
  • 4. Affine Schubert calculus.
ISBN
  • 9781493906819
  • 149390681X
  • 1493906828
  • 9781493906826
LCCN
2014934668
OCLC
870290789
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view