Skip to search
Skip to main content
Search in
Keyword
Title (keyword)
Author (keyword)
Subject (keyword)
Title starts with
Subject (browse)
Author (browse)
Author (sorted by title)
Call number (browse)
search for
Search
Advanced Search
Bookmarks
(
0
)
Princeton University Library Catalog
Start over
Cite
Send
to
SMS
Email
EndNote
RefWorks
RIS
Printer
Bookmark
Mashinnoe obuchenie s Pytorch i Scikit-Learn / Sebastʹi︠a︡n Rashka, I︠U︡si (Khėĭden) Li︠u︡, Vakhid Mirdzhalili.
Author
Raschka, Sebastian
[Browse]
Uniform title
Machine learning with Pytorch and Scikit-Learn.
Russian
[Browse]
Format
Book
Language
Russian
Published/Created
Astana [Kazakhstan] : Izdatelʹstvo Foliant, [2024]
©2024
Description
1 online resource (688 pages) : illustrations
Availability
Available Online
O'Reilly Online Learning: Academic/Public Library Edition
Details
Subject(s)
Python (Computer program language)
[Browse]
Machine learning
[Browse]
Deep learning (Machine learning)
[Browse]
Data mining
[Browse]
Author
Liu, Yuxi (Data scientist)
[Browse]
Mirjalili, Vahid
[Browse]
Summary note
Ischerpyvai︠u︡shchee rukovodstvo po mashinnomu (MO) i glubokomu obuchenii︠u︡ s ispolʹzovaniem i︠a︡zyka programmirovanii︠a︡ Python, freĭmvorka PyTorch i biblioteki scikit-learn. Rassmotreny osnovy MO, algoritmy dli︠a︡ zadach klassifikat︠s︡ii, klassifikatory na osnove scikit-learn, predvaritelʹnai︠a︡ obrabotka i szhatie dannykh, sovremennye metody ot︠s︡enki modeleĭ i obʺedinenie razlichnykh modeleĭ dli︠a︡ ansamblevogo obuchenii︠a︡. Rasskazano o primenenii MO dli︠a︡ analiza teksta i prognozirovanii nepreryvnykh t︠s︡elevykh peremennykh s pomoshchʹi︠u︡ regressionnogo analiza, klasternom analize i obuchenii bez uchiteli︠a︡, pokazano postroenie mnogosloĭnoĭ iskusstvennoĭ neĭronnoĭ seti s nuli︠a︡. Raskryty prodvinutye vozmozhnosti PyTorch dli︠a︡ reshenii︠a︡ slozhnykh zadach. Opisano primenenie glubokikh svertochnykh i rekurrentnykh neĭronnykh seteĭ, transformerov, generativnykh sosti︠a︡zatelʹnykh i grafovykh neĭronnykh seteĭ, Osoboe vnimanie udeleno obuchenii︠u︡ s podkrepleniem dli︠a︡ sistem prini︠a︡tii︠a︡ resheniĭ v slozhnykh sredakh. Ėlektronnyĭ arkhiv soderzhit t︠s︡vetnye illi︠u︡strat︠s︡ii i kody vsekh primerov. Dli︠a︡ programmistov v oblasti mashinnogo obuchenii︠a︡.
Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP).
Notes
Translated from the English.
Source of description
OCLC-licensed vendor bibliographic record.
ISBN
9786011100342
6011100341
OCLC
1458319864
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage.
Read more...
Other views
Staff view
Ask a Question
Suggest a Correction
Report Harmful Language
Supplementary Information