Computational Design of Battery Materials.

Author
Hanaor, Dorian A. H. [Browse]
Format
Book
Language
English
Εdition
1st ed.
Published/​Created
  • Cham : Springer International Publishing AG, 2024.
  • ©2024.
Description
1 online resource (589 pages)

Details

Series
Source of description
Description based on publisher supplied metadata and other sources.
Contents
  • Intro
  • Foreword
  • Contents
  • Contributors
  • Introduction: Battery Materials: Bringing It All Together for Tomorrow's Energy Storage Needs
  • 1 Computational Design of Battery Materials
  • 2 Battery Materials as Key Enablers of Contemporary Technosocieties
  • 3 Objectives of Battery Materials Design
  • 4 Interdisciplinary Aspects of Battery Materials Design
  • References
  • Atomistic Simulations of Battery Materials and Processes
  • 1 Introduction
  • 2 Structure and Ionic Diffusion in PEO-LiTFSI Polymer Electrolyte: Effect of Temperature, Molecular Weight, and Ionic Concentration
  • 3 Transport Properties of Imidazolium Based Ionic Liquids: Effect of Li-Ion Concentration and Electric Field
  • 4 Structural, Dynamic and Diffusion Properties of Lithium Superionic Conductor Li6(PS4)SCl
  • 5 Interfacial Instability of the Li6(PS4)SCl Superionic Conductor at Lithium Metal Anode
  • 6 SEI Formation in Li/Ionic Liquid Systems
  • 7 Summary and Conclusions
  • Ab Initio Interfacial Electrochemistry Applied to Understanding, Tuning and Designing Battery Chemistry
  • 2 Modeling Electrochemical Interfaces
  • 2.1 Introduction to the Grand Canonical Formalism
  • 2.2 The Grand Canonical Formalism Applied to a Redox Process
  • 2.3 Beyond the Computational Hydrogen Electrode Approach
  • 2.4 Introduction to the Ab Initio Grand Canonical Formalism
  • 2.5 How to Use Ω( Φ) Curves: The Reduction of a Solvated Magnesium Cation
  • 2.6 Impact of the Solvation Model
  • 3 Tools for Analyzing the Electrochemical Reactivity
  • 3.1 Discriminating Electrochemical Versus Non-electrochemical Processes
  • 3.2 Electrochemical Active Center and Fukui Function
  • 3.3 Potential Dependent Projected Density of States and Metallicity
  • 4 Application in Batteries
  • 4.1 Solvent Stability: Application to Mg Batteries.
  • 4.2 Prevention of the Electrolyte Decomposition by Using Additives
  • 4.3 Dendrite Formation in Metal-Ion Batteries
  • 4.4 Interface Stabilization Through Surface Coatings Design
  • 5 Conclusion
  • Electrolyte-Electrode Interfaces: A Review of Computer Simulations
  • 2 Interface Ionics
  • 2.1 Molecular Dynamics Simulations
  • 2.2 Classical Electric Double Layer Theories
  • 2.3 Structure of the Electric Double Layer
  • 2.4 Electrolyte-Electrode Interface (EEI)
  • 3 Interface Electronics
  • 3.1 Mechanisms of EEI Formation and Redox Reactions
  • 3.2 Electron Distribution at and Electron Transport Across the EEI
  • 4 Conclusions
  • Many-Particle Na-Ion Dynamics in NaMPO4 Olivine Phosphates (M = Mn, Fe)
  • 2 Methods and Models
  • 3 Results
  • 3.1 Plain MD
  • 3.2 Application of the Shooter Approach
  • 3.3 Shooter Simulations with Na/M Antisite Defects (M = Fe/Mn)
  • 4 Discussion
  • 5 Conclusions
  • Appendix
  • Shooter Method
  • Shooting Pulse Sequence
  • Diffusion Constants
  • Optimised Shooter Calculations
  • Modeling Ionic Transport and Disorder in Crystalline Electrodes Using Percolation Theory
  • 2 Background
  • 2.1 Ionic Percolation in Crystalline Solids
  • 2.2 Diffusion Mechanism and Diffusion Channels
  • 3 Method
  • 3.1 Lattice Percolation Theory
  • 3.2 Application of Lattice Percolation Theory to Ionic Transport
  • 3.3 Detecting Percolation in Simulations
  • 3.4 Accessible Sites
  • 3.5 Tortuosity
  • 3.6 Lattice Percolation Simulations with Dribble
  • 4 Examples of Lattice Percolation Simulations
  • 4.1 Properties of Fully Disordered Rocksalts
  • 4.2 Li Percolation in Orthorhombic LiMnOSubscript 22
  • 5 Discussion
  • 6 Conclusions and Final Remarks
  • Crystal Structure Prediction for Battery Materials
  • 1 Introduction.
  • 2 Computational Property Prediction of Battery Materials
  • 2.1 Battery Performance Metrics
  • 2.2 Computable Metrics for Battery Materials
  • 3 Crystal Structure Prediction
  • 3.1 Theoretical Framework
  • 3.2 A Survey of Crystal Structure Methods and Packages
  • 3.3 Applications in Battery Materials
  • 3.4 Hands-On Tutorial to Find the LiCoO2 Cathode
  • 4 Conclusions and Outlook
  • First-Principles Calculations for Lithium-Sulfur Batteries
  • 2 Computational Characterization of LiPSs
  • 3 Simulation of the Spectroscopy of LiPSs
  • 4 Adsorption Simulation of LiPSs
  • 5 Electronic Interaction Between Anchoring Materials and LiPSs
  • 6 Simulation of Diffusion of Li/LiPSs
  • 7 Understanding of the Redox Reactions of LiPSs
  • 8 Kinetic Process of the Redox Reactions of LiPSs
  • 9 Descriptors for Catalysis and Binding Effect
  • 10 Summary and Outlook
  • Nanoscale Modelling of Substitutional Disorder in Battery Materials
  • 1 General Concepts on Configurational Thermodynamics
  • 2 Disorder Within Rechargeable Battery Materials
  • 3 Methods to Model Configurational Space
  • 3.1 Symmetry Adapted Methods
  • 3.2 Cluster Expansion
  • 3.3 Special Quasirandom Structures
  • 4 Machine Learning Approaches
  • 4.1 Neural Networks
  • 4.2 Kernel-Based Methods
  • 4.3 Moment Tensor Potentials
  • 5 General Conclusions and Perspectives
  • Machine Learning Methods for the Design of Battery Manufacturing Processes
  • 2 Key Steps for Battery Production
  • 3 Machine Learning for Battery Production
  • 4 Case 1: Machine Learning to Reveal the Dependency Between Electrode and Cell Characteristics
  • 5 Case 2: Battery Capacities Prediction and Coating Parameters Analysis via Interpretable Machine Learning
  • 6 Conclusion
  • References.
  • Theoretical Approaches for the Determination of Defect and Transport Properties in Selected Battery Materials
  • 2 Computational Protocols to Disclose Relevant Properties of Battery Materials
  • 2.1 DFT Methods
  • 2.2 Large-Scale Molecular Dynamics Simulations
  • 2.3 Nudged Elastic Band
  • 3 Examining the Consequences of the Oxygen-Sulfur Exchange on Relevant Properties of Alkali Metal Hexastannates and Hexatitanates Employing Advanced DFT Computations
  • 4 Advanced Atomistic Simulations Exploring the Defect Chemistry and Transport Properties of Selected Battery Materials
  • 4.1 Large-Scale MD Computations Promoting Li2SiO3 as an Alternative Inorganic Electrolyte for Future Alkali Metal Batteries
  • 4.2 NEB Protocol Disclosing the Lithium- and Sodium-Ion Transport Properties in Li2Ti6O13, Na2Ti6O13 and Li2Sn6O13
  • 4.3 Combining DFT and Large Scale MD Protocols to Disclose the Underutilized Capability of Strontium Stannate as an Alternative Anode Material
  • 5 Concluding Remarks
  • Notes
  • Applications of Ab Initio Molecular Dynamics for Modeling Batteries
  • 2 Review of AIMD Methodology
  • 3 Applications in Batteries
  • 3.1 Structure Generation and Stability
  • 3.2 Solvation, Transport, and Diffusion
  • 3.3 Voltage Calculation
  • 3.4 Electrolyte Decomposition
  • 4 Outlooks and Conclusions
  • Ab Initio Modeling of Layered Oxide High-Energy Cathodes for Na-Ion Batteries
  • 1.1 Layered Oxides Offer New Paradigm for High-Energy Devices
  • 2 Theoretical Background
  • 2.1 DFT+U: Improving Electron Correlation in NaxTMO2 Systems
  • 2.2 DFT-D: Including Dispersion Forces in Layered NaxTMO2
  • 2.3 Structural Models
  • 2.4 Methodological Approach and Computational Details
  • 3 Unfolding Oxygen Redox in Three Case-Study Materials.
  • 3.1 NaxNi1/4Mn3/4O2: What Enables the O2 Release?
  • 3.2 NaxFe1/8Ni1/8Mn3/4O2: Enhancing the Reversible O2-/On- Evolution
  • 3.3 NaxRu1/8Ni1/8Mn3/4O2: Towards Highly Covalent TM Doping
  • 3.4 Oxygen Vacancies: Easy Predictions of TM-O Bond Lability
  • 4 Conclusions and Perspectives
  • Forming a Chemically-Guided Basis for Cathode Materials with Reduced Biological Impact Using Combined Density Functional Theory and Thermodynamics Modeling
  • Oxygen Redox in Battery Cathodes: A Brief Overview
  • 2 Anionic Redox in Battery Electrode Materials
  • 3 Experimental and Theoretical Investigations
  • 3.1 Contribution to Capacity Versus Detrimental O2 Evolution
  • 3.2 Computational Perspective and Future Direction
  • 4 Oxygen Redox in 3d and 4d Ilmenite-Type NaxTMO3
  • 5 Summary
  • Theoretical Investigations of Layered Anode Materials
  • 2 Computational Methods
  • 2.1 Theoretical Prediction and Stability
  • 2.2 Electronic Properties
  • 2.3 Adsorption Energy of Lithium Adatom
  • 2.4 Activation Energy and Diffusion Coefficient of Lithium-Ion
  • 2.5 Voltage Profile and Theoretical Capacity Storage of Lithium
  • 2.6 Vander-Waals Interaction
  • 3 Theoretical Investigation of Two-Dimensional Materials with a One, Two and Three Atomic Elements as Anode Materials of Lithium Ion Batteries
  • 3.1 Graphene-Based Materials
  • 3.2 Phosphorene
  • 3.3 Silicene
  • 3.4 Germanene, Stanene, Arsenene and Antimonene
  • 3.5 Two-Dimensional BX (X=N, P, As, Sb)
  • 3.6 Metal Transition Dichalcogenides MXSubscript 22 (M=Ti, Zr, Hf, V, Nb, Ta, Mo, Cr, W
  • X=S, Se, Te)
  • 4 Conclusion
  • Design of Improved Cathode Materials by Intermixing Transition Metals in Sodium-Iron Sulphate and Sodium Manganate for Sodium-Ion Batteries
  • 2 Modeling and Computational Methods.
  • 2.1 Modeling of Intermixing Compounds.
ISBN
9783031473036 ((electronic bk.))
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information