LEADER 03315nam a2200493 i 4500001 99129136430606421 005 20240318112430.0 006 m o d | 007 cr#cnu|||||||| 008 230523s2023 sz a ob 001 0 eng d 020 3-031-21050-6 024 7 10.1007/978-3-031-21050-1 |2doi 035 (MiAaPQ)EBC7207079 035 (Au-PeEL)EBL7207079 035 (CKB)26183518800041 035 (DE-He213)978-3-031-21050-1 035 (PPN)268204993 035 (EXLCZ)9926183518800041 040 MiAaPQ |beng |erda |epn |cMiAaPQ |dMiAaPQ 050 4 QA377.3 |b.J563 2023 072 7 PBKS |2bicssc 072 7 MAT006000 |2bisacsh 072 7 PBKS |2thema 082 0 929.374 |223 100 1 Jin, Bangti, |eauthor. 245 10 Numerical treatment and analysis of time-fractional evolution equations / |cBangti Jin, Zhi Zhou. 250 1st ed. 2023. 264 1 Cham, Switzerland : |bSpringer, |c[2023] 264 4 |c©2023 300 1 online resource (428 pages) 336 text |btxt |2rdacontent 337 computer |bc |2rdamedia 338 online resource |bcr |2rdacarrier 490 1 Applied Mathematical Sciences, |x2196-968X ; |v214 505 0 Existence, Uniqueness, and Regularity of Solutions -- Semidiscrete Discretization -- Convolution Quadrature -- Finite Difference Methods: Construction and Implementation -- Finite Difference Methods on Uniform Meshes -- Finite Difference Methods on Graded Meshes -- Nonnegativity Preservation -- Discrete Fractional Maximal Regularity -- Subdiffusion with time-dependent coefficients -- Semilinear Subdiffusion Equations -- Time-Space Formulation and Finite Element Approximation -- A Spectral Petrov-Galerkin Method -- Incomplete Iterative Solution at the Time Levels -- Optimal Control with Subdiffusion Constraint -- Backward Subdiffusion Problems -- Appendix: Mathematical Preliminaries. 520 This book discusses numerical methods for solving time-fractional evolution equations. The approach is based on first discretizing in the spatial variables by the Galerkin finite element method, using piecewise linear trial functions, and then applying suitable time stepping schemes, of the type either convolution quadrature or finite difference. The main concern is on stability and error analysis of approximate solutions, efficient implementation and qualitative properties, under various regularity assumptions on the problem data, using tools from semigroup theory and Laplace transform. The book provides a comprehensive survey on the present ideas and methods of analysis, and it covers most important topics in this active area of research. It is recommended for graduate students and researchers in applied and computational mathematics, particularly numerical analysis. 588 Description based on print version record. 504 Includes bibliographical references and index. 650 0 Evolution equations. 650 7 Equacions d'evolució |2thub 655 7 Llibres electrònics |2thub 776 08 |iPrint version:Jin, Bangti |tNumerical Treatment and Analysis of Time-Fractional Evolution Equations |dCham : Springer International Publishing AG,c2023 |z9783031210495 700 1 Zhou, Zhi, |eauthor. 830 0 Applied Mathematical Sciences, |x2196-968X ; |v214 906 BOOK