Soft computing and signal processing. Proceedings of 3rd ICSCSP 2020. Volume 2 / V. Sivakumar Reddy [and three others], editors.

Format
Book
Language
English
Published/​Created
  • Singapore : Springer, [2021]
  • ©2021
Description
1 online resource (663 pages)

Details

Subject(s)
Editor
Series
  • Advances in intelligent systems and computing ; Volume 1340. [More in this series]
  • Advances in Intelligent Systems and Computing ; Volume 1340
Source of description
Description based on print version record.
Contents
  • Intro
  • Conference Committee
  • Preface
  • Contents
  • About the Editors
  • Artificial Intelligence with New Approach of Concrete Ingredients Changing in the Exact Proportions
  • 1 Introduction
  • 2 Literature Review
  • 3 Materials Used
  • 3.1 Admixture
  • 3.2 Cement
  • 3.3 Fine Aggregate
  • 3.4 Course Aggregate
  • 3.5 Water
  • 3.6 Super Plasticizer
  • 4 Methodology
  • 4.1 Reading for Specimens
  • 4.2 Calculation
  • 5 Experimental Result
  • 6 Conclusion
  • References
  • A New Approach in Cloud Environment to Improve Data Security Using Multiple Bits
  • 3 Proposed Technique
  • 3.1 Algorithm for Embedding of Message
  • 3.2 Algorithm for Repossession of Message
  • 4 Experimental Results and Analysis
  • 5 Conclusion and Future Scope
  • Clustering Text: A Comparison Between Available Text Vectorization Techniques
  • 2 Previous Literature
  • 3 Dataset
  • 3.1 Collection
  • 3.2 Filtering
  • 3.3 Pre Processing
  • 4.1 TFIDF
  • 4.2 Doc2Vec
  • 4.3 Clustering Techniques
  • 4.4 Performance Evaluation
  • 5 Results
  • Evaluating Deep Neural Network Ensembles by Majority Voting Cum Meta-Learning Scheme
  • 2 Combining the Results of Independent Learners
  • 3 Proposed Ensemble Approach
  • 4 Results
  • 5 Conclusion
  • Virtual Mouse Control Using Finger Action
  • 2 Existing System
  • 3 Proposed System
  • 4 Proposed Algorithm
  • 4.1 Actions Performed Using Speech Recognition
  • 4.2 Task Performed Using Speech Reorganization
  • 5 Implementation
  • A Hybrid Model for Combining Neural Image Caption and k-Nearest Neighbor Approach for Image Captioning
  • 2 Related Work
  • 3 Proposed Hybrid Model
  • 3.1 Methodology
  • 3.2 Feature Extraction and Normalization.
  • Neural Abstractive Text Summarizer for Telugu Language
  • 3 Approach
  • 3.1 Recurrent Neural Network Encoder-Decoder
  • 4 Training
  • 5 Evaluation
  • 6 Conclusions
  • OCR-Based Assistive System for Blind People
  • 2 Literature Survey
  • 4 Workflow
  • 5 Hardware Components
  • 6 Software Used
  • 7 OCR
  • 8 Tesseract
  • 9 Text to Speech (TTS)
  • 10 Results
  • 11 Billing Description and Output
  • 12 Conclusion
  • Modern Privacy Risks and Protection Strategies in Data Analytics
  • 1.1 Privacy and Privacy Threats
  • 2 Privacy Preservation Methods
  • An Approach Toward Deep Learning-Based Facial Expression Recognition in Wavelet Domain
  • 2 Related Works
  • 3 The Proposed Framework
  • 3.1 Face Processing
  • 3.2 Feature Representation Using DWT
  • 3.3 Expression Recognition Using CNN
  • 4 Experimental Results and Discussions
  • 5 Conclusions
  • Modified UNet Architecture with Less Number of Learnable Parameters for Nuclei Segmentation
  • 2 Methodology
  • 2.1 UNet
  • 2.2 Segnet
  • 3 Experiments and Results
  • 3.1 Dataset Description
  • 3.2 Results and Discussions
  • 4 Conclusion
  • Classification of Diseases Using CBC
  • 2 Review of Literature
  • 3 Implementation
  • 3.1 Data Pre-Processing
  • 3.2 Model Training
  • 3.3 Evaluation of Model
  • 3.4 Machine Learning Algorithms
  • 3.5 Analysis of the Model
  • 4 Experimental Results and Performance Analysis
  • Post-earthquake Building Damage Detection Using Deep Learning
  • 3.1 Preprocessing
  • 3.2 Network Architecture
  • 3.3 Jaccard Index.
  • 3.4 Dice Coefficient
  • 4 Experiments and Setup
  • 4.1 Dataset
  • 4.2 Setup
  • 4.3 Parameters
  • 4.4 Analysis
  • Ensemble of Deep Transfer Learning Models for Parkinson's Disease Classification
  • 2.1 Architectural Performance
  • 2.2 Ensemble Method
  • 2.3 Dataset
  • 3 Results and Discussion
  • 3.1 Experimental Results from Commonly Used Deep Learning Architectures
  • 3.2 Experimental Results from the Proposed Ensemble Model
  • Energy-Efficient Clustering in Real-World Wireless Sensor Networks: Implementation
  • 3 Clustering in Real-World WSNs
  • 4 Energy Efficient Clustering: Optimal Cluster Head Selection
  • 5 Hopcount Matrix: Properties
  • 6 Implementation, Results and Discussions
  • 7 Conclusions
  • Customer Feedback Through Facial Expression Recognition System Using Neural Network
  • 3 Methodology
  • 3.1 Image Data Collection
  • 3.2 Data Preprocessing
  • 3.3 Model Selection and Training
  • 4 Models for Facial Expression Recognition
  • 4.1 CNN
  • 4.2 VGG16
  • 4.3 VGG19
  • 5 Transfer Learning
  • 6 Result and Analysis
  • 6.1 Final Results on Real-Time Faces
  • 7 Conclusion
  • Taxi Demand Prediction Using LSTM and Optimized Taxi Geo-distribution
  • 3 Implementation of Location and Time-Based Taxi Demand Prediction
  • 3.1 Data Preparation
  • 3.2 Time Binning
  • 3.3 Feeding the Input to the LSTM Model
  • 3.4 Training the Model
  • 3.5 Testing the Model
  • 4 Proposed Rank-Based Optimized Algorithm for Driver Mapping
  • 4.1 Driver-Demand Check
  • 4.2 Construction of Rank Table
  • 4.3 Driver Mapping Using Rank Table
  • 4.4 Mapping Optimization
  • References.
  • Container ID Detection and Recognition
  • 3 Technical Details
  • 3.1 Architecture of the System
  • 3.2 Data Collection
  • 3.3 Data Preprocessing
  • 4 Detection Module
  • 4.1 Container Detection
  • 4.2 Text Detection
  • 4.3 Character Detection
  • 5 Classification Module
  • 6 Experimental Results
  • 7 Performance Analysis
  • 8 Summary
  • Autonomous Flying Using Deep Reinforcement Learning
  • 3 Experimental Setup
  • 3.1 Virtual Environment
  • 3.2 Quadcopter
  • 3.3 Deep Deterministic Policy Gradient
  • 5 Results and Conclusion
  • Detecting Surface Cracks on Buildings Using Computer Vision: An Experimental Comparison of Digital Image Processing and Deep Learning
  • 3.1 Data Acquisition
  • 3.2 Building the Classifier
  • 3.3 Evaluation
  • 3.4 Interpretation
  • 4 Experimental Results
  • 4.1 The DIP-Based Approach Performance
  • 4.2 The Deep Learning-Based Approach
  • 4.3 Performance on Dataset 4
  • 6 Future Scope of Work
  • 7 Declaration
  • A Survey on Preserving Data Confidentiality in Cloud Computing Using Different Schemes
  • 3 The Objective of the Study
  • 4 Results and Comparisons
  • Deep Learning-Based Approach for Human Activity Recognition
  • 3 Problem Definition
  • 4 Proposed System
  • 4.1 Mathematical Foundation
  • 4.2 Proposed Model
  • 5 Performance Analysis and Result
  • 6 Conclusion and Future Scope
  • Vuln-Check: A Static Analyzer Framework for Security Parameters in Web
  • 3 Proposed Work
  • 3.1 Recon Phase
  • 3.2 Scanning
  • 3.3 Enumeration
  • 3.4 Static Analyzer Phase.
  • 3.5 Reporting
  • 4 Experimental Setup and Results
  • 5 Comparative Analysis
  • Concept Drift Detection Using Minimum Prediction Deviation
  • 3 Minimum Prediction Deviation
  • 3.1 Bootstrapping Samples
  • 3.2 Uncertainty
  • 3.3 Minimum Prediction Deviation Score
  • 5 Experiments
  • 5.1 Datasets
  • 5.2 Experimental Setup
  • 6 Results and Discussion
  • 7 Conclusion and Future Work
  • An Interactive System for Assessing Emotional Wellness
  • 3 Architecture Overview
  • 4 Implementation
  • 4.1 Anxiety Test Questionnaire
  • 4.2 Fuzzification
  • 4.3 Rule base
  • 4.4 Rule Evaluation and Aggregation
  • 4.5 Defuzzification
  • Performance Analysis of Genetic Algorithm for Function Optimization in Multicore Platform Using DEAP
  • 3 Genetic Algorithm for Function Optimization Using Multicore Platform
  • 3.1 Multicore Platform
  • 3.2 Distributed Evolutionary Algorithms in Python (DEAP)
  • 3.3 Genetic Algorithm for Function Optimization Using Multicore Platform
  • 3.4 Benchmark Functions and Parameter Settings
  • 4 Experimental Analysis
  • 4.1 Experimental Setup and Parameter Setting
  • 4.2 Performance Analysis of Genetic Algorithm for Function Optimization in Single and Multicore Platforms for Function with Fixed Variables
  • 4.3 Performance Analysis of Genetic Algorithm for Function Optimization in Single and Multicore Platforms for Function with Variable Dimensions
  • Various Image Modalities Used in Computer-Aided Diagnosis System for Detection of Breast Cancer Using Machine Learning Techniques: A Systematic Review
  • 2.1 Data Extraction
  • 3 Results.
  • 3.1 Imaging Modalities.
ISBN
  • 981-16-1249-8
  • 981-16-1248-X
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information