Recent advances in artificial intelligence and data engineering : select proceedings of AIDE 2020 / edited by Pushparaj Shetty D., Surendra Shetty.

Format
Book
Language
English
Published/​Created
  • Singapore : Springer, [2022]
  • ©2022
Description
1 online resource (454 pages)

Details

Subject(s)
Editor
Series
Bibliographic references
Includes bibliographical references.
Source of description
Description based on print version record.
Contents
  • Intro
  • Preface
  • Contents
  • About the Editors
  • Smart Environment and Network Issues
  • Machine Learning-Based Ensemble Network Security System
  • 1 Introduction
  • 2 Related Work
  • 3 Dataset Description
  • 4 Proposed Work
  • 4.1 First LOD (LOD-1)
  • 4.2 Second LOD (LOD-2)
  • 5 Experimental Setup and Results
  • 5.1 NB Classifier
  • 5.2 LR Classifier
  • 5.3 K-NN Classifier
  • 5.4 DT Classifier
  • 6 Conclusion and Future Scope
  • References
  • Machine Learning-Based Air Pollution Prediction
  • 3 Framework and System Design
  • 3.1 Implementation Details
  • 3.2 Dataset Details
  • 3.3 Algorithms
  • 4 Experimental Set-up and Results
  • 5 Conclusion and Future Scope
  • Crop and Fertilizer Recommendation System Based on Soil Classification
  • 3 Proposed Work
  • 3.1 SVM Algorithm
  • 4 Experimental Results and Analysis
  • 4.1 Comparison of SVM with k-NN and Decision Tree
  • 5 Conclusion
  • Human Activity Classification Using Deep Convolutional Neural Network
  • 2 Literature Survey
  • 3 Proposed Model
  • 4 Results and Discussion
  • Intelligent IoT-Based Product Dispenser and Billing System
  • 3 Proposed System
  • 3.1 System Control Flow
  • 3.2 Recommendation Algorithm
  • 3.3 System Architecture
  • 3.4 Recommendation System
  • Models Predicting PM 2.5 Concentrations-A Review
  • 2 Objectives of Various Research Articles
  • 2.1 Machine Learning Models
  • 2.2 Statistical Models/ Time Series Model/Chemical Models
  • 3 Region and Data
  • 4 Data Processing Method
  • 5 Methodology/Algorithms
  • 5.1 Neural Networks
  • 5.2 XGBoost and Random Forest
  • 5.3 Support Vector Machines.
  • 5.4 Decision Tree Regression and MLP Regression
  • 5.5 LSTM
  • 5.6 Time Series Model
  • 5.7 NAXRX, GWR, EZN
  • 5.8 Weather Research and Forecasting Model with Chemistry (WRF-Chem)
  • 5.9 Wavelet Transform
  • 5.10 Differential Evolution (DE)
  • 6 Conclusion
  • Performance Analysis of Modified TCP New Reno for MANETs
  • 2 Result Analysis for TCP New Reno
  • 2.1 Performance Parameters for Existing TCP New Reno
  • 2.2 Result Analysis for Congestion Window Set to 80%-TCP New Reno Modified Window (MW
  • 3 Improvement Over Existing Method
  • 4 Conclusion
  • Smart Health and Pattern Recognition
  • Identification of Helmets on Motorcyclists and Seatbelt on Four-Wheeler Drivers
  • 3 Proposed Methodology
  • 4 Results and Discussions
  • 6 Future Work
  • Prediction of Autism in Children with Down's Syndrome Using Machine Learning Algorithms
  • 1.1 Issues and Challenges
  • 1.2 Objectives
  • 1.3 Architecture of the Proposed Study
  • 3 Study Area and Methodology
  • 3.1 Collection of Data
  • 3.2 Data Cleaning
  • 3.3 Implementation Process to Build a Model (Module 1 Dataset Using UCI Repository)
  • 3.4 Implementation Process to Build a Model (Module 2 Real-Time Dataset)
  • 4 Conclusion and Future Work
  • Speech Emotion Recognition Using K-Nearest Neighbor Classifiers
  • 2 Framework
  • 3 KNN Classifiers
  • 4 Simulation Results
  • Object Detection and Voice Guidance for the Visually Impaired Using a Smart App
  • 2 Background
  • 3 The Proposed System
  • 4 System Architecture and Implementation
  • 4.1 Methodology
  • 4.2 Description of the Process
  • 5 Results
  • 6 Test cases
  • 7 Conclusion
  • References.
  • Application to Aid Hearing and Speech Impaired People
  • 3 Summary of Literature Review with Research Gaps
  • 4 Dataset Description
  • 5 Methodology
  • 6 Results and Discussion
  • Variants of Fuzzy C-Means on MRI Modality for Cancer Image Archives
  • 2 Methodology
  • 2.1 Fuzzy Approaches for MRI Segmentation
  • 3 Empirical Evaluation
  • 4 Summary
  • A Review on Effectiveness of AI and ML Techniques for Classification of COVID-19 Medical Images
  • 2 Literature Review
  • 3 Conclusion
  • Medical Image Encryption Using SCAN Technique and Chaotic Tent Map System
  • 2 SCAN Method
  • 2.1 Chaotic Map
  • 2.2 Tent Map
  • 3 Proposed Method
  • 4 Performance Analysis for Proposed Work
  • 4.1 Histogram Analysis
  • 4.2 Entropy
  • 4.3 Mean Square Error
  • 4.4 Number of Pixel Change Rate (NPCR)
  • 4.5 Peak Signal to Noise Ratio (PSNR)
  • 4.6 Unified Average Changed Intensity (UACI)
  • 4.7 Experimental Results
  • Utilization of Dark Data from Electronic Health Records for the Early Detection of Alzheimer's Disease
  • 2 Review of Literature
  • 3.1 Data Collection
  • 3.2 Data Preprocessing
  • 3.3 Machine Learning Classifiers
  • 4 Results
  • 5 Conclusions
  • 6 Future Scope
  • Brain Tumor Segmentation Using Capsule Neural Network
  • 3 Dataset
  • 4 Preprocessing
  • 5 Evaluation Metrics
  • 6 Results
  • Forgery Detection and Image Recommendation Systems
  • Using Machine Learning for Image Recommendation in News Articles
  • 2.1 Data Collection
  • 2.2 Structuring the Data
  • 2.3 Training the Model
  • 2.4 Generating Training Data.
  • 2.5 Training Neural Networks
  • 2.6 Image Selection Process
  • 2.7 Query Generator Component
  • 3 Results
  • An Approach to Noisy Synthetic Color Image Segmentation Using Unsupervised Competitive Self-Organizing Map
  • 2 Proposed Methodology for Noisy Synthetic Image Clustering
  • 3 Experimental Outcomes and Discussions
  • Building Dataset and Deep Learning-Based Inception Model for the Character Classification of Tigalari Script
  • 2 Tigalari Script
  • 3 Preparation of Dataset
  • 4 Literature Review
  • 6 Results and Evaluation
  • Handwritten Character Recognition Using Deep Convolutional Neural Networks
  • 3 Convolutional Neural Networks
  • 4 Proposed CNN Architecture
  • 5 Results and Discussion
  • 6 Conclusions
  • Implementing Face Search Using Haar Cascade
  • 3 Methodology
  • 3.1 Face Detection
  • 3.2 Face Recognition
  • 3.3 Converting the Frames into Video
  • 3.4 Algorithm
  • 4 Implementation Details
  • 4.1 The Scale Invariant Detector
  • 4.2 The Modified AdaBoost Algorithm
  • 4.3 The Cascaded Classifier
  • 6 Conclusion and Future Work
  • Deep Learning Photograph Caption Generator
  • 4 Methodology
  • Streaming of Multimedia Data Using SCTP from an Embedded Platform
  • 2 System Specifications
  • 2.1 Hardware Specifications
  • 2.2 Software Specifications
  • 3 Communication Protocols
  • 3.1 Transmission Control Protocol (TCP)
  • 3.2 Stream Control Transmission Protocol (SCTP)
  • 4 Design and Implementation
  • 4.1 Block Diagram
  • 4.2 Flow Chart.
  • 5 Experimental Results
  • A Fast Block-Based Technique to Detect Copy-Move Forgery in Digital Images
  • 4 Experimental Results
  • 5 Conclusion and Discussion
  • Bottlenecks in Finite Impulse Response Filter Architectures on a Reconfigurable Platform
  • 2 Architectures for FIR Filter
  • 2.1 Conventional Architecture (Direct Form and Transposed Form)
  • 2.2 Multiplier-Less Architecture
  • 2.3 Pipelined Architecture
  • 2.4 Parallel Architecture
  • 3 Requirements of FIR Filter: A Reconfigurable Platform Perspective
  • 3.1 Filter Order
  • 3.2 Precession of Data to Represent the Sample/Coefficients
  • 3.3 Data Type to Represent the Signal
  • 3.4 Sample Rate
  • 3.5 Filter Coefficients
  • 4.1 Simulation Results
  • 4.2 RTL Implementation
  • 4.3 Comparative Analysis
  • Copy-Move Image Forgery Detection Using Discrete Cosine Transforms
  • 2 Proposed Technique
  • 3.1 Performance Evaluation
  • Sentiment Classification and Data Analysis
  • A Detail Analysis and Implementation of Haar Cascade Classifier
  • 1 Introduction and Methodology
  • 2 Cascading Classifiers
  • 3 To Create the Haar Cascade Files
  • 4 Results and Conclusion
  • Sentiment Analysis of Twitter Posts in English, Kannada and Hindi languages
  • 2.1 Related Work
  • 3.1 Model Training
  • 3.2 Classification
  • 4.1 Dataset
  • 4.2 Preprocessing
  • 4.3 Bag of Words Model
  • 4.4 Dataset to Vector Transform
  • 5.1 Results for English Dataset
  • 5.2 Results for Hindi Dataset
  • 5.3 Results for Kannada Dataset
  • 6 Conclusion and Future Work.
ISBN
  • 981-16-3342-8
  • 981-16-3341-X
OCLC
1285783892
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information