Second international conference on sustainable technologies for computational intelligence : proceedings of ICTSCI 2021 / Ashish Kumar Luhach [and three others], editors.

Format
Book
Language
English
Published/​Created
  • Gateway East, Singapore : Springer, [2022]
  • ©2022
Description
1 online resource (389 pages)

Details

Subject(s)
Editor
Series
Source of description
Description based on print version record.
Contents
  • Intro
  • Preface
  • Contents
  • About the Editors
  • Alleviating the Issues of Recommendation System Through Deep Learning Techniques
  • 1 Introduction
  • 2 Research Question
  • 3 Research Methodology
  • 4 Recommendation System
  • 5 Issues in Recommendation System
  • 5.1 Cold Start Problem
  • 5.2 Sparsity
  • 5.3 Overspecialization Problem
  • 6 Deep Learning Techniques
  • 6.1 Convolutional Neural Network (CNN)
  • 6.2 Autoencoder (AE)
  • 6.3 Multilayer Perceptron
  • 6.4 Recurrent Neural Network
  • 6.5 Adversial Networks
  • 6.6 Attentional Models
  • 6.7 Deep Reinforcement Learning (DRL)
  • 7 Future Research Direction
  • 8 Conclusion
  • References
  • Communication Assistant Using IoT-Based Device for People with Vision, Speech, and Hearing Disability
  • 2 Literature Review
  • 3 Proposed System
  • 3.1 Data Acquisition
  • 3.2 Data Pre-processing
  • 3.3 Feature Extraction
  • 3.4 System Design and Working
  • 4 Experimental Results
  • 5 Conclusion
  • 6 Future Scope
  • An Optimized Object Detection System for Visually Impaired People
  • 3 Theoretical Framework
  • 4 Proposed Work
  • 5 Proposed Algorithm
  • 6 Result and Analysis
  • 7 Conclusion
  • Sentiment Analysis of Zomato and Swiggy Food Delivery Management System
  • 3 Methodology
  • 3.1 Sentiment Analysis
  • 3.2 Data Acquired
  • 3.3 Data Pre-processing
  • 3.4 Lexicon-Based Approach
  • 3.5 Polarity and Subjectivity
  • 4 Result
  • 6 Future Work
  • Text Similarity Identification Based on CNN and CNN-LSTM Model
  • 2 Related Work
  • 3 Research Approach
  • 3.1 Data Collection Phase
  • 3.2 Data Preprocessing Phase
  • 3.3 Model Design Phase
  • 3.4 Evaluation, Results, and Analysis Phase
  • 4 Implementation
  • 4.1 Data Collection Phase.
  • 4.2 Data Preprocessing Phase
  • 4.3 Model Design Phase
  • 4.4 Evaluation, Results, and Analysis Phase
  • Survey Based on Configuration of CubeSats Used for Communication Technology
  • 2 Data Collection
  • 3 CubeSats Information
  • 4 Data Analysis
  • 5 Research Motivation on CubeSats
  • 6 Conclusion
  • Ontology Driven Software Development for Better Understanding and Maintenance of Software System
  • 4 Implementation, Result, and Analysis
  • Application of Genetic Algorithm (GA) in Medical Science: A Review
  • 2 Applications
  • 2.1 Cancer Diagnosis
  • 2.2 Plastic Surgery
  • 2.3 Disease Diagnosis
  • 2.4 Cardiology
  • 2.5 Diabetes Prediction
  • 2.6 Image Segmentation
  • 2.7 Gynecology
  • 2.8 Radiology
  • 2.9 Personalized Health Care
  • 2.10 Radiotherapy
  • 3 Discussion
  • 4 Conclusion
  • Designing a Machine Learning Model to Predict Parkinson's Disease from Voice Recordings
  • 2 Background
  • 2.1 Machine Learning
  • 2.2 Parkinson's Disease Dataset
  • 2.3 Microsoft Azure Machine Learning
  • 3 Methods
  • 3.1 Cleaning the Missing Data
  • 3.2 Filter-Based Feature Selection
  • 3.3 Splitting the Data
  • 3.4 Train Model
  • 3.5 Scoring the Model
  • 3.6 Evaluating the Model
  • 4 Results
  • 5 Future Improvements
  • Prediction Techniques for Maintenance of Marine Bilge Pumps Onboard Ships
  • 2 Present Maintenance Philosophy
  • 5 Future Scope
  • A Systematic Literature Review on Software Development Estimation Techniques
  • 2 Significance of Software Estimation
  • 3 Related Works
  • 4 Software Cost Estimation Methodologies
  • 4.1 Algorithmic Methods.
  • 4.2 Non-Algorithmic Methods
  • 4.3 Machine Learning and Deep Learning Methods
  • 5 Accuracy Metrics
  • 5.1 Mean Magnitude Relative Error
  • 5.2 Mean of Magnitude of Error Relative to the Estimate
  • 5.3 Prediction Performance
  • 5.4 Mean Absolute Error
  • 5.5 Root Mean Square Error
  • 5.6 Median Magnitude of Relative Error
  • 5.7 Mean Balance Error
  • 6 Software Metrics
  • 6.1 Process Metrics
  • 6.2 Product Metrics
  • 6.3 Size of Metrics
  • 7 Conclusion and Future Scope
  • A Comprehensive Review of Routing Techniques for IoT-Based Network
  • 2 Challenges in Routing for IoT-Based Network
  • 2.1 Network
  • 2.2 Connectivity
  • 2.3 Limited Resource
  • 2.4 Congestion Control
  • 2.5 Deployment of Node
  • 3 Routing Protocols in IoT
  • 3.1 Establishment of Network
  • 3.2 Discovery of Route
  • 3.3 Protocol Operations
  • 4 Trends in IoT
  • 4.1 Top Trends in IoT
  • 5 Energy-Efficient Routing Protocols for IOT-Based Network
  • Static Hand Sign Recognition Using Wavelet Transform and Convolutional Neural Network
  • 2 Related Works
  • 3.1 Data Pre-Processing
  • 3.2 Feature Extraction
  • 3.3 Classification
  • 4 Implementation, Results, and Analysis
  • 4.1 Data Pre-Processing
  • 4.2 Feature Extraction
  • 4.3 Classification
  • Enhanced A5 Algorithm for Secure Audio Encryption
  • 2 A5 Encryption Algorithm
  • 3 The Modified A5/1
  • 4 Observations
  • 5 Proposed Enhanced A5
  • Stock Market Prediction Techniques: A Review Paper
  • 3 Prediction Methods
  • 3.1 Fundamental Analysis
  • 3.2 Technical Analysis
  • 3.3 Four Basic Components of Valuation of Stock
  • 3.4 Machine Learning Methods
  • References.
  • Survey of Various Techniques for Voice Encryption
  • 2 Analysis of Various Research Works for Generation of Pseudo-Random Sequence
  • 3 Conclusion
  • Identifying K-Most Influential Nodes in a Social Network Using K-Hybrid Method of Ranking
  • 3.1 K-Shell Centrality
  • 3.2 Batch and K-Batch Value
  • 3.3 H-Index Centrality
  • 3.4 K-Hybrid Centrality
  • 3.5 Selection of Spreaders
  • 3.6 SIR Model
  • 4 Datasets and Performance Metrics
  • 5 Results
  • Security Threats in IoT: Vision, Technologies and Research Challenges
  • 3 Security Threats in IoT
  • 4 IoT Security Using Various Technologies
  • 4.1 Blockchain
  • 4.2 Fog Computing
  • 4.3 Machine Learning
  • 4.4 Edge Computing
  • 5 Comparison and Discussion
  • 6 Research Challenges
  • Predict Foreign Currency Exchange Rates Using Machine Learning
  • 3.1 Supervised Support Vector Machine
  • 3.2 System Design
  • 4 Results and Discussions
  • 4.1 Dataset
  • 4.2 Results
  • 4.3 Discussions
  • 5 Conclusion and Future Work
  • Software Defect-Based Prediction Using Logistic Regression: Review and Challenges
  • 2 The Journey of Existing Works
  • 3 Threats and Challenges Related to Software Defect-Based Analyzers and Predictors
  • 4 Evaluating the Performance Factors
  • 5 Concluding Remarks and Future Work
  • Evaluation and Application of Clustering Algorithms in Healthcare Domain Using Cloud Services
  • 2 Clustering Techniques
  • 3 Related Work
  • 4 Performance Evaluation Using WEKA Tool
  • 5 Use of Cloud Services in Healthcare Domain
  • 6 Proposed Work
  • 6.1 Logical View of the Process.
  • 6.2 Physical View of the Process
  • 7 Exposing Clustered Data to Clinicians and Patients
  • 8 Conclusion and Future Scope
  • Prediction of Stock Movement Using Learning Vector Quantization
  • 2 Motivation
  • 3 Literature Review
  • 4 Methodology
  • 4.1 Model
  • 5 Experimental Results
  • 7 Future Work
  • Tree Hollow Detection Using Artificial Neural Network
  • 4 Expected Result
  • Accident Identification and Alerting System Using ARM7 LPC2148
  • 2 Problem Statement
  • 3 Literature Survey
  • 4.1 Block Diagram
  • 4.2 Flowchart
  • 4.3 Algorithm
  • 4.4 Working Procedure
  • 5 Proposed Work
  • 6 Components and Figures
  • 6.1 LPC2148
  • 6.2 Global Positioning System (GPS)
  • 6.3 GSM
  • 6.4 LCD
  • 6.5 MEMS Sensor
  • 6.6 MAX232
  • 6.7 EEPROM
  • 7 Comparison with Our Proposed Work
  • 8 Result and Conclusion
  • Skin Cancer Detection and Severity Prediction Using Computer Vision and Deep Learning
  • 1.1 Actinic Keratosis
  • 1.2 Basal Cell Carcinoma
  • 1.3 Benign Keratosis
  • 1.4 Dermatofibroma
  • 1.5 Melanocytic Nevi
  • 1.6 Melanoma
  • 1.7 Vascular Skin Lesions
  • 2 Proposed Methodology
  • 2.1 Dataset Preparation
  • 2.2 Image Preprocessing
  • 2.3 Model Development
  • 2.4 Training Model
  • 2.5 Severity Approach
  • 2.6 One Class Classification
  • 3 Result
  • 4 Conclusion and Future Scope
  • Investigating the Value of Energy Storage Systems on a Utility Distribution Network
  • 2 Modelling of the System
  • 2.1 System Description
  • 2.2 Digsilent Method
  • 3 Results and Discussion
  • 3.1 Load and Generation Profiles
  • 3.2 Results Showing Energy Storage System Integrated to the Network
  • 4 Conclusion.
ISBN
  • 981-16-4641-4
  • 981-16-4640-6
OCLC
1281983962
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information