Computational vision and bio-inspired computing : proceedings of ICCVBIC 2021 / edited by S. Smys, João Manuel R. S. Tavares, Valentina Emilia Balas.

Format
Book
Language
English
Published/​Created
  • Singapore : Springer, [2022]
  • ©2022
Description
1 online resource (877 pages)

Details

Subject(s)
Editor
Series
Bibliographic references
Includes bibliographical references and index.
Source of description
Description based on print version record.
Contents
  • Intro
  • Preface
  • Acknowledgements
  • Contents
  • About the Editors
  • Molecular Docking Analysis of Selected Phytochemicals for the Treatment of Proteus Syndrome
  • 1 Introduction
  • 2 Methods and Materials
  • 3 Results and Discussion
  • 4 Conclusion and Future Prospects
  • References
  • A Deep Learning-Based Detection of Wrinkles on Skin
  • 2 Literature Review
  • 3 Proposed Methodology
  • 3.1 Computer Vision
  • 3.2 Convolution Neural Network (CNN)
  • 3.3 Hough Trnaformer
  • 4 Experimental Results
  • 5 Conclusion
  • Image Transmission Using Leach and Security Using RSA in Wireless Sensor Networks
  • 2 Literature Survey
  • 3 Leach with RSA: Proposed Scheme
  • 4 Simulation Results
  • Code Injection Prevention in Content Management Systems Using Machine Learning
  • 2 Background and Related Work
  • 3 Our Work
  • 3.1 Data Gathering
  • 3.2 Data Analysis and Feature Extraction
  • 3.3 Dataset
  • 3.4 Feature Selection
  • 3.5 Machine Learning Using Logistic Regression Algorithm
  • 4 Results
  • 4.1 Model Interpretation
  • A Review of Hyperspectral Image Classification with Various Segmentation Approaches Based on Labelled Samples
  • 1.1 Organization of the Paper
  • 2 Datasets and Metrics Used for Hyperspectral Image Classification
  • 3 Literature Survey
  • 3.1 Machine Learning Techniques
  • 3.2 Neural Network Techniques
  • 3.3 Analysis Dependent on Various Parameters
  • 4 Discussion
  • 5 Future Technologies
  • 6 Conclusion
  • Improvements in User Targeted Offline Advertising Using CNN and Deviation-Based Queue Scheduling
  • 2 Related Work
  • 3 Proposed Work
  • 3.1 Overview
  • 3.2 Convolutional Neural Network
  • 3.3 Deviation-Based Queue Generation
  • 4 Results and Discussion.
  • 5 Performance Comparison
  • 5.1 Overlapping Target Audience Problem
  • 5.2 Comparison of TARP 2.0 with Random Display and Display Using TARP
  • 5.3 Delay Time Comparison of TARP 2.0 with TARP
  • Movie Recommendation System Using Hybrid Collaborative Filtering Model
  • 1.1 Literature Survey
  • 2 Need and Applicability
  • 2.1 Need
  • 2.2 Applicability
  • 3 Proposed Approach
  • 3.1 Dataset Preparation
  • 3.2 Dataset Description
  • 3.3 Modeling
  • Hybrid Pipeline Infinity Laplacian Plus Convolutional Stage Applied to Depth Completion
  • 1.1 Related Works
  • 2 Method
  • 2.1 Used Metric
  • 2.2 Proposed Metric
  • 3 Practical Model Implementation
  • 3.1 Convolutional Stage
  • 3.2 Convolutional Stage for the Completed Depth Map
  • 4 Parameters Estimation
  • 4.1 Learning Curve for the Complete Pipeline
  • 4.2 Learning Curve for Median-Pipeline
  • 4.3 Learning Curve Convolutional Stage-Median-Pipeline Simplified Metric
  • 4.4 Learning Curve SC1-Median-Pipeline with Simple Metric
  • 5 Experiments and Dataset
  • 5.1 Dataset
  • 5.2 Experiments
  • 6 Results
  • 7 Discussion
  • 8 Conclusions
  • A Novel Approach of DEMOO with SLA Algorithm to Predict Protein Interactions
  • 2 Methodology
  • 2.1 Feature Extraction
  • 2.2 Label Propagation Algorithm
  • 2.3 Incremental Depth Extension (INDEX) Approach
  • 2.4 Formation of a PPI Network
  • 2.5 Neighborhood Topology with Protein Interaction Prediction
  • 2.6 Functional Characteristics of Protein Interaction Prediction
  • 2.7 Predicting PPIs Using ASA
  • 2.8 Differential Evolution Algorithm for Multi-objective Optimization
  • 2.9 Stochastic Learning Automata (SLA)
  • 3.1 Performance Measures.
  • 3.2 Performance Comparison of Existing and Proposed Methods for DIP and SCOP Datasets
  • 4 Conclusion
  • Economic Load Dispatch Problem with Valve-Point Loading Effect Using DNLP Optimization Using GAMS
  • 2 Economic Load Dispatch Mathematical Model
  • 2.1 Constraints
  • 2.2 Procedure
  • 2.3 Contributions of Proposed Method
  • 3 Results
  • 4 Conclusions
  • Solar Radio Spectrum Classification Based on ConvLSTM
  • 2 Solar Radio Spectrum Dataset
  • 2.1 The Introduction of SBRS Dataset
  • 2.2 Dataset Extension
  • 3 Pre-processing of Solar Radio Spectrums
  • 3.1 Channel Normalization
  • 3.2 Down-Sampling
  • 4 Solar Radio Spectrum Classification Model Based on ConvLSTM
  • 5 Experiment Results and Analysis
  • Particle Swarm Optimization-Based Neural Network for Wireless Heterogeneous Networks
  • Impact Analysis of COVID-19 on Various Indian Sectors
  • 4 Dataset
  • 5 Screen time Analysis
  • 5.1 Hypothesis Testing
  • 6 Industrial Analysis
  • 6.1 Information Technology
  • 6.2 Fast-moving Consumer Goods (FMCG)
  • 6.3 Hospitality
  • 6.4 Aviation
  • 7 Conclusion
  • Emotion Recognition in Speech Using MFCC and Classifiers
  • 2 Lıterature Revıew
  • 3 Methodology
  • 3.1 Emotions
  • 3.2 Data
  • 3.4 Feature Extraction
  • 3.5 Mel-frequency Cepstral Coefficient
  • A Comparative Analysis on Image Caption Generator Using Deep Learning Architecture-ResNet and VGG16
  • 2 Related Works
  • 3 Comparison of Image Generator Using ResNet-50 and VGG16
  • 3.1 Image Preprocessing
  • 3.2 Image Feature Extraction.
  • 4 Text Feature Understanding Using LSTM
  • 5 Results and Discussion
  • Corona Warrior Smart Band
  • 3 Block Diagram and Working Principle
  • 4 Implementation Platform
  • 5 Results
  • Cellular Learning Automata: Review and Future Trend
  • 2 Cellular Automata (CA)
  • 3 Learning Automata (LA) and Reinforcement Learning (RL)
  • 4 Cellular Learning Automata (CLA)
  • 5 Wireless Sensor and Actuator Networks (WSAN)
  • 6 Future Trends
  • Computer Vision and Machine Learning-Based Techniques for Detecting the Safety Violations of COVID-19 Scenarios: A Review
  • 2.1 Survey on Face Mask Detection
  • 2.2 Survey on Social Distancing Detection
  • 2.3 Survey on People Count Detection
  • 2.4 Comparison Table of Literature Review
  • 3 Outcome of Literature Review
  • 4 Datasets
  • 5 Challenges and Future Perspectives
  • Stigmergy-Based Collision-Avoidance Algorithm for Self-Organising Swarms
  • 2 Multi-agent Collision Avoidance Based on Stigmergy
  • 3 Numerical Experiments
  • Handling Security Issues in Software-defined Networks (SDNs) Using Machine Learning
  • 2 Need of SDN
  • 3 SDN and NFV
  • 4 Security Issues in SDN
  • 4.1 Hardware Security Issues
  • 4.2 Security Threats at Software Level
  • 5 Early Approaches for Securing SDN
  • 5.1 Intrusion Detection and Prevention System (IDPS) for SDN
  • 5.2 Intrusion Tolerant System (ITS) for SDN
  • 5.3 Stateful Firewall for SDN
  • 5.4 Framework for DDOS Detection and Prevention
  • 6 Securing SDN with Machine Learning
  • 6.1 Supervised ML for SDN
  • 6.2 Unsupervised ML Algorithm for SDN
  • 6.3 Semi-supervised Learning Approaches for SDN.
  • 6.4 Machine Learning-based NIDS for SDN
  • 7 Issues in Existing ML-based SDN
  • 8 Conclusion
  • 9 Future Scope
  • Multi-purpose Web Application Honeypot to Detect Multiple Types of Attacks and Expose the Attacker's Identity
  • 3 Methods Used
  • 3.1 Honeypot
  • 3.2 GUI
  • 3.3 Controller
  • 3.4 Models
  • 3.5 Sequence of Events
  • 4 Proposed System
  • 4.1 System Working
  • 4.2 Overcoming Brute Force Script Attack
  • 4.3 Overcoming Static Resource Attack
  • 4.4 Overcoming Web Scraping Script (WSS) Attack
  • 4.5 Overcoming GET/POST Request
  • 4.6 Advantages of the Proposed Method
  • 5 Experimental Results
  • 6 Conclusion and Future Scope
  • An Empirical Approach for Tuning an Autonomous Mobile Robot in Gazebo
  • 3 Related Theory
  • 3.1 Sensors
  • 3.2 Light Detection and Ranging (LIDAR)
  • 3.3 Inertial Measurement Unit (IMU)
  • 3.4 Adaptive Monte Carlo Localization (AMCL)
  • 3.5 Navigation
  • 4 Methodology
  • 4.1 Costmap Parameters
  • 4.2 Planner Parameters
  • 5 Experimentation Result
  • 6 Result Analysis
  • An Investigation on Computational Intelligent Solutions for Highly Dynamic Wireless Sensor Networks
  • 2 Computational Intelligent Paradigms
  • 2.1 Fuzzy Logic (FL)
  • 2.2 Evolutionary Algorithms (EA)
  • 2.3 Artificial Neural Networks (ANN)
  • 2.4 Swarm Intelligence (SI)
  • 3 WSN Challenges
  • 4 Related Work
  • 4.1 CI Approaches for Energy Management
  • 4.2 Heuristic Solutions for Packet Routing
  • 4.3 Traffic Management with Channel Dynamics Using CI Methods
  • A Study of Underwater Image Pre-processing and Techniques
  • 3 Types of Image Pre-processing
  • 3.1 Color Conversion
  • 4 Binarization
  • 5 Filtering
  • 6 Resizing.
  • 7 Techniques of Underwater Image Processing.
ISBN
  • 981-16-9572-5
  • 981-16-9573-3
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information