Skip to search
Skip to main content
Catalog
Help
Feedback
Your Account
Library Account
Bookmarks
(
0
)
Search History
Search in
Keyword
Title (keyword)
Author (keyword)
Subject (keyword)
Title starts with
Subject (browse)
Author (browse)
Author (sorted by title)
Call number (browse)
search for
Search
Advanced Search
Bookmarks
(
0
)
Princeton University Library Catalog
Start over
Cite
Send
to
SMS
Email
EndNote
RefWorks
RIS
Printer
Bookmark
Spectral properties of Ruelle transfer operators for regular Gibbs measures and decay of correlations for contact Anosov flows / Luchezar Stoyanov.
Author
Stoyanov, Luchezar N., 1954-
[Browse]
Format
Book
Language
English
Published/Created
Providence, RI : AMS, American Mathematical Society, 2023.
©2023
Description
v, 121 pages ; 26 cm
Details
Subject(s)
Ruelle operators
[Browse]
Gibbs' equation
[Browse]
Anosov flows
[Browse]
Series
Memoirs of the American Mathematical Society ; no. 1404.
[More in this series]
Memoirs of the American Mathematical Society, 0065-9266 ; number 1404
[More in this series]
Summary note
In this work we study strong spectral properties of Ruelle transfer operators related to a large family of Gibbs measures for contact Anosov flows. The ultimate aim is to establish exponential decay of correlations for Hölder observables with respect to a very general class of Gibbs measures. The approach invented in 1997 by Dolgopyat in "On decay of correlations in Anosov flows" and further developed in Stoyanov (2011) is substantially refined here, allowing to deal with much more general situations than before, although we still restrict ourselves to the uniformly hyperbolic case. A rather general procedure is established which produces the desired estimates whenever the Gibbs measure admits a Pesin set with exponentially small tails, that is a Pesin set whose preimages along the flow have measures decaying exponentially fast. We call such Gibbs measures regular. Recent results in Gouëzel and Stoyanov (2019) prove existence of such Pesin sets for hyperbolic diffeomorphisms and flows for a large variety of Gibbs measures determined by Hölder continuous potentials. The strong spectral estimates for Ruelle operators and well-established techniques lead to exponential decay of correlations for Hölder continuous observables, as well as to some other consequences such as: (a) existence of a non-zero analytic continuation of the Ruelle zeta function with a pole at the entropy in a vertical strip containing the entropy in its interior; (b) a Prime Orbit Theorem with an exponentially small error--Abstract, page v.
Notes
"March 2023, volume 283, number 1404 (seventh of 7 numbers)"
Bibliographic references
Includes bibliographical references (pages 111-115) and index.
Contents
Chapter 1. Introducation and results
Chapter 2. Preliminaries
Chapter 3. Lyapunov exponents and Lyapunov regularity functions
Chapter 4. Non-integrability of contact Anosov flows
Chapter 5. Main estimates for temporal distances
Chapter 6. Contraction operators
Chapter 7. L1 contraction estimates
Chapter 8. Proofs of the main result
Chapter 9. Temporal distance estimates on cylinders
Chapter 10. Regular distortion for Anosov flows
Appendix A. Proofs of some technical lemmas
Bibliography
Index
List of symbols.
Show 11 more Contents items
ISBN
9781470474058 ((pbk.))
1470474050 ((pbk.))
OCLC
1372180821
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage.
Read more...
Other views
Staff view
Ask a Question
Suggest a Correction
Report Harmful Language
Supplementary Information