Curvilinear micromagnetism : from fundamentals to applications / Denys Makarov, Denis D. Sheka, editors.

Format
Book
Language
English
Published/​Created
  • Cham, Switzerland : Springer, [2022]
  • ©2022
Description
1 online resource (420 pages)

Details

Subject(s)
Editor
Series
Topics in applied physics ; Volume 146. [More in this series]
Source of description
Description based on print version record.
Contents
  • Intro
  • Preface
  • References
  • Contents
  • Contributors
  • 1 Geometry-Induced Magnetic Effects in Planar Curvilinear Nanosystems
  • 1.1 Introduction
  • 1.2 Model of Curved 1D Ferromagnetic Systems
  • 1.3 Curvature-Induced Effects in Flat Magnetic Systems
  • 1.3.1 Wire with a Constant Curvature-Ring-Shaped Wire
  • 1.3.2 Wire with a Box-Function Curvature
  • 1.3.3 Wire with Periodical Curvature Distribution
  • 1.4 Domain Walls in Curved Ferromagnetic Wires
  • 1.4.1 Statics of the Domain Wall
  • 1.4.2 Dynamics of the Domain Wall
  • 1.4.3 Domain Wall Depinning Experiments
  • 1.5 Fabrication and Characterization
  • 1.5.1 Lithographic Methods
  • 1.5.2 Ion-Induced Methods
  • 1.5.3 Magnetic Characterization
  • 1.6 Conclusion and Outlook
  • 2 Effects of Curvature and Torsion on Magnetic Nanowires
  • 2.1 Introduction
  • 2.2 Geometry of Space Curves
  • 2.3 Model of a Curvilinear Ferromagnetic Wire in 3D Space
  • 2.3.1 Wires with a Circular Cross-Section
  • 2.3.2 Narrow Ribbons
  • 2.4 Implications
  • 2.4.1 Ground States
  • 2.4.2 Linear Dynamics
  • 2.4.3 Curvilinear Wires for Spintronics and Spin-Orbitronics Applications
  • 2.4.4 Artificial Magnetoelectric Materials
  • 2.5 Curvilinear Antiferromagnetic Spin Chains
  • 2.5.1 Micromagnetic Description of a Spin Chain
  • 2.5.2 Geometry-Driven Biaxial Chiral Helimagnets
  • 2.5.3 Interplay Between Anisotropy and Geometry
  • 2.5.4 Geometry-Induced Weak Ferromagnetism
  • 2.6 Experimental Studies
  • 2.6.1 Fabrication
  • 2.6.2 Characterization
  • 2.7 Concluding Remarks and Outlook
  • 3 Curvilinear Magnetic Shells
  • 3.1 Introduction
  • 3.2 Fundamentals of Curvilinear Magnetism of Shells
  • 3.2.1 Lexicon of Differential Geometry of Surfaces
  • 3.2.2 Magnetic Energy of Curvilinear Shells
  • 3.2.3 Emergent Interactions: Symmetry, Curvature and Textures
  • 3.3 Curvature-Induced Effects.
  • 3.3.1 Topological Patterning
  • 3.3.2 Geometrical Magnetochiral Effects
  • 3.4 Manipulation of Topologically Protected Magnetic States in Curved Shells
  • 3.4.1 Skyrmions in Curvilinear Shells Engineered by Mesoscale DMI
  • 3.4.2 Magnetic Vortex on a Spherical Cap: Polarity-Circulation Coupling
  • 3.4.3 Control of the Magnetochiral Effects by Magnetic Fields
  • 3.4.4 Dynamics of Topological Textures in Curved Films
  • 3.5 Experimental Platforms
  • 3.5.1 Hollow Nanoshells: A New Playground for Curvilinear Magnetism
  • 3.5.2 Nanosphere Lithography: A Versatile Tool for Manufacturing Spherically Shaped Magnetic Nanostructures
  • 3.5.3 Ion-Induced Surface Nanopatterning: Bottom-Up Templates for Curvilinear Magnetic Shells
  • 3.6 Conclusion and Outlook
  • 4 Tubular Geometries
  • 4.1 Introduction
  • 4.2 Statics Properties of Tubular Nanomagnets
  • 4.2.1 Magnetic Configurations at Equilibrium
  • 4.2.2 Fabrication of Magnetic Tubular Geometries
  • 4.2.3 Magnetization Reversal Process
  • 4.3 Dynamical Properties
  • 4.3.1 Chiral Domain Wall Motion
  • 4.3.2 Vortex Domain Wall Dynamics-General Remarks
  • 4.4 Spin wave Propagation
  • 4.4.1 Theory of Spin Waves in Magnetic Nanotubes
  • 4.5 Summary and Outlook
  • 5 Complex-Shaped 3D Nanoarchitectures for Magnetism and Superconductivity
  • 5.1 Theoretical Background
  • 5.2 Methods of Fabrication of 3D Nanoarchitectures
  • 5.3 3D Magnetic Nanoarchitectures Fabricated by Optical Writing
  • 5.4 3D Magnetic Nanoarchitectures Fabricated by FEBID
  • 5.4.1 Basics and 3D Writing Aspects of FEBID
  • 5.4.2 3D Magnetic Wireframe Building Blocks
  • 5.4.3 3D Magnetic Nanoarchitectures
  • 5.4.4 Complex-Shaped 3D Nanoarchitectures for Plasmonics and Beyond
  • 5.5 3D Nanoarchitectures for Superconductivity
  • 6 Imaging of Curved Magnetic Architectures
  • 6.1 Introduction.
  • 6.2 Overview of Microscopy Approaches to Image Curved Magnetic Architectures
  • 6.2.1 Magneto-Optical Microscopies
  • 6.2.2 X-Ray Microscopies
  • 6.2.3 Electron Microscopies
  • 6.2.4 Neutron Microscopies
  • 6.2.5 Scanning Probe Microscopies
  • 6.3 Future Directions-Challenges and Opportunities
  • 7 Curvilinear Magnetic Architectures for Biomedical Engineering
  • 7.1 General Overview of the Field: Magnetic Micro/Nanomotors
  • 7.2 The Role of Asymmetry in the Generation of Motion
  • 7.2.1 Scallop Theorem
  • 7.2.2 Asymmetry of the Micro/Nanomotors
  • 7.2.3 Symmetry Breaking to Get Deterministic Motion of the Micro-/Nanomotors
  • 7.3 Major Applications for the Life Sciences and Environment
  • 7.3.1 Environmental and Bio Remediation
  • 7.3.2 Biosensing
  • 7.3.3 Drug Delivery
  • 8 Magnetic Soft Actuators: Magnetic Soft Robots from Macro- to Nanoscale
  • 8.1 Introduction
  • 8.2 Mechanics of Magnetic Soft Robots
  • 8.2.1 Mechanisms of Actuation
  • 8.2.2 Relevant Torques
  • 8.2.3 Range of Motion
  • 8.2.4 Available Force
  • 8.2.5 Available Work
  • 8.3 Magnetostatic Energy of Thin Films
  • 8.4 Magnetoelastic Systems at the Nanoscale
  • 8.4.1 Nanoscale Flexible One-Dimensional Wires
  • 8.4.2 Nanoscale Flexible Ribbons
  • 8.5 Concluding Remarks
  • 9 Geometrically Curved Magnetic Field Sensors for Interactive Electronics
  • 9.1 Introduction
  • 9.2 Background
  • 9.2.1 Interactive Devices, Human-Machine Interfaces, and Virtual Reality
  • 9.2.2 Soft Human-Machine Interfaces and Magnetosensitive E-Skins
  • 9.2.3 Flexible Electronics and E-Skins
  • 9.3 Magnetosensitive E-Skins with Directional Perception
  • 9.4 Geomagnetosensitive E-Skins
  • 9.5 On-Site Conditioned Magnetosensitive E-Skins
  • 9.6 Magnetosensitive E-Skins with Multimodal Capabilities.
  • 9.7 Magnetosensitive E-Skins with Intrinsic Logic and Out-of-Plane Detection
  • 9.8 Magnetic Soft Actuators with Embedded Flexible E-Skin Sensing Modules
  • 9.9 Summary
  • 9.10 Outlook
  • Index.
ISBN
3-031-09086-1
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information