Advanced materials and components for 5G and beyond / Colin Tong.

Author
Tong, Xingcun Colin [Browse]
Format
Book
Language
English
Published/​Created
  • Cham, Switzerland : Springer, [2022]
  • ©2022
Description
1 online resource (276 pages)

Details

Subject(s)
Series
Bibliographic references
Includes bibliographical references and index.
Source of description
Description based on print version record.
Contents
  • Intro
  • Preface
  • Contents
  • Abbreviations
  • About the Author
  • Chapter 1: 5G Technology Components and Material Solutions for Hardware System Integration
  • 1.1 Evolution of 5G Technology
  • 1.2 5G Technology Components
  • 1.2.1 5G Spectrum
  • 1.2.2 Massive Multiple-Input Multiple-Output (MIMO) Antennas
  • 1.2.3 Network Slicing
  • 1.2.4 Dual Connectivity and Long Term Evolution (LTE) Coexistence
  • 1.2.5 Support for Cloud Implementation and Edge Computing
  • 1.3 Materials Solutions for 5G Hardware System Integration
  • 1.3.1 Evolution of the Cellular Base Station and Its Construction Materials
  • 1.3.2 Drivers to 5G Hardware System Integration
  • 1.3.3 Materials and Electronic Components for 5G Packaging Technology
  • 1.3.3.1 Packaging Requirements for 5G Systems
  • 1.3.3.2 Dielectric Materials for 5G Module Packages
  • 1.3.3.3 Microwave Circuit Design and Materials
  • 1.3.3.4 Thermal Conductors and Thermal Management for 5G
  • 1.3.3.5 Integration of Passive Components
  • 1.3.3.5.1 Discrete Lumped Circuits for sub6 GHz 5G Bands
  • 1.3.3.5.2 Distributed Components for mm-Wave
  • 1.3.3.6 Antenna Systems in Package
  • 1.3.3.7 High-Precision Patterning in Heterogeneous Package Integration for 5G
  • 1.3.4 Nanomaterials for Nanoantennas in 5G
  • 1.4 Challenges in 5G and Beyond - 6G
  • 1.5 Outlook and Future Perspectives
  • References
  • Chapter 2: Semiconductor Solutions for 5G
  • 2.1 Evolution of 5G Semiconductor Technologies
  • 2.2 Effect of CMOS Technology Scaling on Millimeter Wave Operations
  • 2.3 Distributed and Lumped Design Approaches for Fabricating Passives
  • 2.3.1 Distributed Approach
  • 2.3.2 Lumped approach
  • 2.4 Comparison of Silicon and III-V Semiconductors
  • 2.5 Transistor Model Design Challenge in CMOS Technology
  • 2.6 GaN and GaN-on-SiC Wide Bandgap Semiconductors for 5G Applications.
  • 2.6.1 Characteristics of GaN Devices Applied in 5G Technology
  • 2.6.2 GaN Power Integration for MMIC in 5G Technology
  • 2.6.2.1 GaN Power Integration for MMICS
  • 2.6.2.2 GaN Base Station PAs
  • 2.6.2.3 GaN Frequency Synthesis
  • Chapter 3: Design and Performance Enhancement for 5G Antennas
  • 3.1 5G Antenna Classification
  • 3.1.1 Classification Based on Input and Output Ports
  • 3.1.2 Classification Based on Antenna Types
  • 3.2 Performance Enhancement Techniques for 5G Antenna Design
  • 3.2.1 General Antenna Performance Enhancement Techniques
  • 3.2.2 Mutual Coupling Reduction (Decoupling) Techniques
  • 3.3 Structural Design and Building Materials of 5G Antennas
  • 3.3.1 SISO Wideband Antennas
  • 3.3.1.1 Single Element Antenna
  • 3.3.1.2 Multielement Antennas
  • 3.3.2 SISO Multiband Antenna
  • 3.3.3 MIMO Wideband Antennas
  • 3.3.3.1 Multielement Without Metal Rim Antennas
  • 3.3.3.1.1 Dual Element Antenna Without Metal Rim
  • 3.3.3.1.2 Multielement Antenna Without Metal Rim
  • 3.3.3.1.3 Multielement Antenna with Metal Rim
  • 3.3.4 MIMO Multiband Antennas
  • Chapter 4: PCB Materials and Design Requirements for 5G Systems
  • 4.1 The Evolution of Printed Circuit Boards
  • 4.1.1 History
  • 4.1.2 Materials and Fabrication Process
  • 4.2 RF and High Frequency PCB Technologies
  • 4.2.1 Basic Circuit Configuration of High-Frequency PCBs
  • 4.2.2 Transmission Line Parameters Used in RF/High Frequency PCB Design
  • 4.3 Designing High-Frequency PCBs
  • 4.3.1 Variables Affecting the Performance of High-Frequency PCBs
  • 4.3.2 High-Frequency PCB Layout Techniques
  • 4.4 Materials Selection of PCBs for Millimeter Wave Applications
  • 4.4.1 High-Frequency PCB Material Selection Guidelines
  • 4.4.2 PCB Materials Used for High-Frequency Applications
  • 4.4.2.1 PCB Substrate Materials
  • 4.4.2.2 Conductors for High-Frequency PCBs.
  • 4.5 The Role of Materials in High Frequency PCB Fabrication
  • 4.6 Material Issues Related to 5G Applications
  • 4.6.1 Mixed Signal Acceptance Circuit Board Designs
  • 4.6.2 EMI Shielding Challenges
  • 4.6.3 Impedance Control and Signal Loss
  • 4.6.4 Thermal Management Challenges
  • 4.6.5 Moisture Absorption
  • Chapter 5: Materials for High Frequency Filters
  • 5.1 The 5G Effect on Filter Technologies
  • 5.1.1 Current Status of Mobile Device Filter Technologies
  • 5.1.2 The 5G Filter Performance Challenges
  • 5.1.2.1 The 5G Frequency Spectrum
  • 5.1.2.2 The 5G Filter Requirements
  • 5.1.2.3 Physical Design and Emerging Solutions for the 5G Filters
  • 5.2 Materials and Design for Acoustic Filters
  • 5.2.1 Current Application and Band Allocation of Acoustic Filter Technology
  • 5.2.2 Basic Working Principle of the BAW Filter
  • 5.2.2.1 Structure of the BAW Resonator
  • 5.2.2.2 Key Parameters of the BAW Resonator
  • 5.2.2.3 Topology of the BAW Filter
  • 5.2.3 Materials for the BAW Resonator
  • 5.2.3.1 Piezoelectric Materials
  • 5.2.3.2 Electrode Materials
  • 5.2.4 Temperature Compensation
  • 5.2.5 Frequency Tenability
  • 5.2.6 Lithium Niobate and Laterally Excited Bulk-Wave Resonators (XBAR)
  • 5.3 Microwave and Millimeter Wave Filters Based on MEMS Technology
  • 5.3.1 Micromachined Filters
  • 5.3.1.1 Surface Micromachining Superconductor Filters
  • 5.3.1.2 Planar Microstrip Filters
  • 5.3.1.3 Coplanar Waveguide Filters
  • 5.3.1.4 Micromachined Dielectric Waveguide Resonate Filters
  • 5.3.2 Micromachined Tunable Filters
  • 5.4 Metamaterial and Metasurface Filters for 5G Communications
  • Chapter 6: EMI Shielding Materials and Absorbers for 5G Communications
  • 6.1 EMI Shielding Design Principle in 5G Systems
  • 6.2 Component Package-Level EMI Shielding for 5G Modules
  • 6.3 Board Level EMI Shielding for 5G Systems.
  • 6.4 Design and Materials Selection for 5G Absorbers
  • 6.5 Advanced Metallic Composite Materials for High-Frequency EMI Shielding
  • 6.5.1 Hollow and Porous Metal-Based EMI Shielding Materials
  • 6.5.2 Metal-Based EMI Shielding Composites with Frequency-Selective Transmission
  • 6.5.3 Particle-Based EMI Shielding Metallic Composites
  • 6.5.4 MXene-Based EMI Shielding Composites
  • 6.5.5 Metal-Based Flexible EMI Shielding Materials
  • 6.6 Emerging Polymer-Based EMI Shielding and Absorber Materials
  • Chapter 7: Thermal Management Materials and Components for 5G Devices
  • 7.1 Thermal Management Challenges and Strategies in 5G Devices
  • 7.1.1 Form Factor-Constrained Thermal Management Solutions
  • 7.1.2 5G Mobile Device Level Thermal Management
  • 7.1.3 Base Station Level Thermal Management
  • 7.1.4 Emerging Thermal Management Challenges and Strategies
  • 7.2 Thermal Management Materials and Components for 5G-Enabled Mobile Devices
  • 7.2.1 Thermal Management Design and Fundamental Solutions for Smartphones
  • 7.2.1.1 Thermal Management Design Guideline
  • 7.2.1.2 Fundamental Thermal Management Solutions
  • 7.2.1.2.1 Heat Conduction and Spreading
  • 7.2.1.2.2 Convective Air Cooling
  • 7.2.1.2.3 Convective Liquid Cooling
  • 7.2.2 Material Selection for Heat Spreaders and Heat Sinks
  • 7.2.3 Flat Plate Heat Pipes and Vapor Chambers for Mobile Electronic Devices
  • 7.2.4 Thermal Interface Materials
  • 7.2.5 Thermal Insulation Materials
  • 7.2.6 Thermal Metamaterials
  • 7.3 Thermal Management of 5G Base Station Antenna Arrays
  • 7.3.1 Cooling in Traditional AESA's
  • 7.3.2 Cooling in Planar AESA's
  • 7.3.3 Antenna Array Cooling at Millimeter Waves
  • 7.4 Thermal Management of 5G Edge Computing
  • Chapter 8: Protective Packaging and Sealing Materials for 5G Mobile Devices.
  • 8.1 Design of 5G Millimeter Wave Compatible Covers for High-End Mobile Devices
  • 8.1.1 Dielectric Cover Design
  • 8.1.2 Metallic Cover Design with Inserted Dielectric Slots
  • 8.1.3 Integration Design Consideration
  • 8.2 Thin Film Encapsulation in 5G Electronic Packaging
  • 8.3 Adhesives and Sealants for 5G Systems
  • Chapter 9: Perspectives on 5G and Beyond Applications and Related Technologies
  • 9.1 Applications in Industry Verticals and Their Needs
  • 9.1.1 5G in Automotive
  • 9.1.2 Big Data Analytics in 5G
  • 9.1.3 5G Emergency Communications
  • 9.1.4 Future Factories Enabled by 5G Technology
  • 9.1.5 Smart Health-Care Network Based on 5G
  • 9.1.6 5G Technology for Smart Energy Management and Smart Cities
  • 9.1.6.1 5G Technology for Smart Cities
  • 9.1.6.2 Applications of 5G Technology in the Construction Industry and Infrastructures
  • 9.1.6.3 Smart Building System Integrated with 5G Communication Technology
  • 9.2 Perspectives on 6G Wireless Communications
  • 9.3 Challenges and Prospects of Core Materials and Components for 5G and Beyond
  • 9.3.1 Ultralow-Loss High-Reliability Copper-Clad Laminates
  • 9.3.2 5G Metamaterials and Low-Loss High-Performance RF Technology
  • 9.3.3 5G Low-Loss Magnetoelectric Functional Materials and Devices
  • 9.3.4 Multimodule Integrated Printed Circuit Boards
  • 9.3.5 Manufacturing Technology of Photoelectric Integrated Cables
  • 9.3.6 Photonics-Assisted Ultrabroadband RF Transceiver Integrated Modules
  • 9.3.7 All-Optical Network and Superlarge-Core Fiber Optic Cables
  • Index.
ISBN
9783031172076 ((electronic bk.))
OCLC
1351202970
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information