Progress in nanoscale and low-dimensional materials and devices : properties, synthesis, characterization, modelling and applications / Hilmi Ünlü, Norman J. M. Horing, editors.

Format
Book
Language
English
Published/​Created
  • Cham, Switzerland : Springer, [2022]
  • ©2022
Description
1 online resource (939 pages)

Details

Subject(s)
Editor
Series
Topics in applied physics ; Volume 144. [More in this series]
Bibliographic references
Includes bibliographical references and index.
Source of description
Description based on print version record.
Contents
  • Intro
  • Preface
  • Contents
  • Contributors
  • 1 Modelling of Semiconductors for Low Dimensional Heterostructure Devices
  • 1.1 Introduction
  • 1.2 Strain in Low Dimensional Heterostructures
  • 1.3 Composition Effects in Ternary/Binary Heterostructures
  • 1.4 Electronic Band Structure Modelling
  • 1.5 Semiempirical Tight Binding Modelling
  • 1.5.1 Semiempirical sp3 Tight Binding Theory
  • 1.5.2 Semiempirical sp3s* Tight Binding Theory
  • 1.5.3 Semiempirical sp3d5 Tight Binding Theory
  • 1.5.4 Semiempirical sp3d5s* Tight Binding Theory
  • 1.6 Density Functional Theory Modelling
  • 1.7 Tight Binding and DFT-MBJLDA Modelling of Band Offsets
  • 1.8 Pressure Effects on Structure and Electronic Properties
  • 1.8.1 Structural Parameters
  • 1.8.2 Electronic Properties
  • 1.9 Finite Difference Method for Low Dimensional Structures
  • 1.9.1 Application of Finite Difference Method to Quantum Wells
  • 1.9.2 Application of Finite Difference Method to Quantum Wires
  • 1.9.3 Finite Difference Method Applied to Quantum Dots
  • 1.10 Conclusion
  • References
  • 2 Strain in Microscale and Nanoscale Semiconductor Heterostructures
  • 2.1 Introduction
  • 2.2 Strain in Planar and Core/Shell Heterostructures
  • 2.3 Strain in Microscale Planar Heterostructures
  • 2.4 Strain in Spherical Core/Shell Heterostructures
  • 2.5 Strain in Cylindrical Core/Shell Heterostructures
  • 2.6 Interface Strain and Morphology in Core/Shell QDs
  • 2.7 Bandgaps and Band Offsts in Core/Shell Heterostructures
  • 2.8 Strain Effects on Bandgaps and Band Offsets
  • 2.9 Comparison of Measured and Predicted Core Bandgaps
  • 2.9.1 Comparison of Predicted and Extracted Band Offsets
  • 2.9.2 Conclusions and Suggestions
  • 3 Synthesis, Characterization and Modelling of Colloidal Quantum Dots
  • 3.1 Introduction
  • 3.2 Synthesis of CdSe Core and CdSe/ZnS Core/Shell QDs.
  • 3.2.1 Synthesis of CdSe Core QDs
  • 3.2.2 Growth of ZnS Shells on CdSe Core
  • 3.3 HRTEM Characterization
  • 3.4 XRD Characterization
  • 3.5 Optical Absorption and Emission Characteristics
  • 3.5.1 UV-Vis Characterization
  • 3.5.2 Fluorescence Characterization
  • 3.5.3 UV-Vis, PL and Stokes Shift
  • 3.6 Dielectric Spectroscopy Characterization
  • 3.7 Precursor Ratio Effect on Nanoparticle Growth
  • 3.8 Emission Quality and PL Yield
  • 3.9 Stability of CdSe Quantum Dots
  • 3.10 Strain Effects on Size and Core Bandgap
  • 3.11 Conclusion
  • 4 Synthesis of Transition Metal Dichalcogenides (TMDs)
  • 4.1 Introduction
  • 4.2 Mechanical Exfoliation
  • 4.2.1 Scotch-Tape Method
  • 4.2.2 Metal-Assisted Method
  • 4.2.3 Layer-Resolved Splitting (LRS) Method
  • 4.3 Liquid-Phase Exfoliation
  • 4.3.1 Organic Solvent-Based Exfoliation Method
  • 4.3.2 Ion Intercalation Method
  • 4.4 Chemical Vapor Deposition (CVD)
  • 4.4.1 Thermal Chemical Vapor Deposition
  • 4.4.2 Metal-Organic Chemical Vapor Deposition (MOCVD)
  • 4.4.3 Chemical Vapor Transport (CVT) Method
  • 4.5 Molecular Beam Epitaxy (MBE)
  • 4.6 Doping/Alloy of Transition Metal Dichalcogenides
  • 4.6.1 Substitution of Cation Elements in TMDs
  • 4.6.2 Substitution of Anion Elements in TMDs
  • 4.7 Summary
  • 5 II-VI Semiconductor Quantum Dots: The Evolution of Color Purity with Structure
  • 5.1 Introduction to II-VI Semiconductor Quantum Dots in Glass and Quantum Size Effect
  • 5.2 Quantum Size Effect
  • 5.3 Synthesis of Quantum Dots in Aqueous Solution
  • 5.3.1 Aqueous Synthesis of CdTe Quantum Dots
  • 5.4 Investigation of Optical and Structural Properties of CdTe Thin Films
  • 5.4.1 Experimental Details
  • 5.4.2 Effect of Grain Size and Strain on Bandgap Energy
  • 5.4.3 Urbach Energy
  • 5.4.4 XRD Spectra
  • 5.4.5 Williamson-Hall Analysis of X-Ray Diffraction
  • 5.4.6 Raman Spectra.
  • 5.4.7 Conclusion
  • 5.5 Difficulties in the Thin Film Growth of ZnO and Defect Structure
  • 5.6 Colorimetric Evaluation of Group II-VI Quantum Dots in Glass Matrix
  • 5.6.1 Materials and Methods
  • 5.6.2 Results and Discussions
  • 6 Recent Progress in Magnetic Nanostructures Studied by Synchrotron Radiation
  • 6.1 Introduction
  • 6.2 XMCD and XAFS Study for Thin Film
  • 6.2.1 Methodology
  • 6.2.2 XMCD and XAFS for Cluster-Layered Fe/Cr Films
  • 6.2.3 Other Applications
  • 6.3 Mössbauer Spectroscopy for Thin Films Using Synchrotron Radiation
  • 6.3.1 Mössbauer Spectroscopy for Thin Films
  • 6.3.2 Synchrotron Mössbauer Source
  • 6.3.3 Mössbauer Spectroscopy with Monoatomic Layer Spatial Resolution
  • 6.3.4 Other Applications
  • 7 Quantum Dynamics and Statistical Thermodynamics of Nanostructured Dirac-Like Materials in a Magnetic Field
  • 7.1 Introduction
  • 7.2 Dirac "Relativistic" Materials
  • 7.3 Calculations A: Graphene and Dichalcogenides
  • 7.4 Calculations B
  • 7.5 Diced Lattice Calculations
  • 7.6 Work in Progress and Planned
  • 7.7 Hamiltonian: H proptop
  • π = p + eA c
  • 7.8 Green's Function Equa. and Magnetic Field Gauge
  • 7.9 Retarded Green's Function Equation
  • 7.10 Diagonal Green's Function Analysis
  • 7.11 Conservation of Angular Momentum
  • 7.12 Diagonal Green's Function Solution
  • 7.13 Dichalcogenide Energy Spectrum
  • 7.14 Off-Diagonal Elements
  • 7.15 Other Representations (Notation: ρ=sqrtg2+ε2npm )
  • 7.16 Thermodynamic Green's Function and Spectral Weight Matrix A
  • 7.17 Spectral Weight Matrix (Matrix Elements of A rightarrow Aij)
  • 7.18 Model Function Dot Green's fn. Gdot-Graphene
  • 7.19 Landau Quantized Energy Spectrum: Graphene-Dot
  • 7.20 Model Q-Wire Green's Function GW-Dichalcogenide
  • 7.21 Q-Wire Green's Fn. Elements (Gr review)
  • 7.22 Model Q-Wire Eigenenergy Dispersion Relation.
  • 7.23 Landau Quantized Dichalcogenide Q-Wire Energy Spectrum
  • 7.24 Model Q-Anti-dot Lattice Dichalcogenide Landau Minibands
  • 7.25 Lattice GL-Fn. In Magnetic Field: Analysis
  • 7.26 Solution for Lattice GL-Function
  • 7.27 Q-Anti-dot Lattice Energy Spectrum: Landau Minibands
  • 7.28 Dispersion Relation Analysis for Small Anti-dot Area
  • 7.29 Landau Minibands
  • 7.30 Statistical Thermodynamics of Group VI Dichalcogenides in Magnetic Field
  • 7.31 Thermodynamic Functions: Relations
  • 7.32 Wilson's Evaluation in Terms of Ordinary Partition Function
  • 7.33 Retarded Green's Fn. and Ordinary Partition Function
  • 7.34 Thermodynamic Green's Function and Spectral Weight A
  • 7.35 Landau Quantized Dichalcogenide Spectral Weight
  • 7.36 Dichalcogenide Grand Potential: Degenerate Regime
  • 7.37 Contour Integral for Ω: Degenerate Regime
  • 7.38 Grand Potential in the Degenerate Regime: Further Comments
  • 7.39 Magnetic Moment of Landau Quantized Dichalcogenides
  • 7.40 Entropy of Landau Quantized Dichalcogenides
  • Specific Heat
  • 8 T-3 "DICED" LATTICE Quantum Dynamics and Statistical Thermodynamics (a) Zero Magnetic Field and (b) Landau Quantized
  • 8.1 Introduction
  • 8.2 Dynamics and Statistical Thermodynamics of the T-3 Diced Lattice
  • 8.3 "Diced" Lattice: Retarded Green's Fn. Gret at Zero Field
  • 8.4 Statistical Thermodynamic Functions: Diced Lattice
  • 8.5 Grand Potential Ω
  • 8.6 Degenerate Regime Continued: Ω Calculation
  • 8.7 Contour Integration for Ω
  • 8.8 Ω In the Degenerate Regime
  • 8.9 Entropy and Specific Heat: Degenerate Regime
  • 8.10 T-3 "Diced" Lattice in Quantizing Magnetic Field B
  • 8.11 Green's Function Equations (9 Elements Gij)
  • 8.12 Gij ("0245R,ω) Solutions
  • Energy Spectrum
  • 8.13 Grand Potential Ω for Diced Lattice In Magnetic Field.
  • 8.14 Ω for Landau Quantized Diced Lattice: Degenerate Regime: µβto infty
  • 8.15 Magnetic Moment M of Diced Lattice: Degenerate Regime ( T to 0 )
  • 8.16 Magnetic Moment M of Diced Lattice: Temperature Corrections ΔM in the Approach to T = 0
  • 8.17 Entropy and Specific Heat of Landau-Quantized Diced Lattice
  • 8.18 Summary: T-3 Diced Lattice-Zero Field Statistical Thermodynamic Degenerate Regime
  • 8.19 Summary: T-3 Diced Lattice-Magnetic Field Statistical Thermodynamics (A) Degenerate Regime
  • 8.20 Summary: T-3 Diced Lattice-Magnetic Field Statistical Thermodynamics (B) Degenerate Regime
  • 9 Exact Temperature and Density Dependencies of the Statistical Thermodynamic Functions of the Pseudospin-1 Diced Lattice Carriers
  • 9.1 Introduction
  • 9.2 Calculations
  • 9.3 Degenerate Limit
  • 9.4 Non-degenerate Limit
  • 9.5 Discussion
  • 10 Non-Markovian Fermionic Quantum State Diffusion Approach
  • 10.1 Introduction
  • 10.2 The NMQSD Theory for Quantum System Coupled to Fermionic Baths
  • 10.2.1 The General Stochastic Schrödinger Equation and the Corresponding Master Equation
  • 10.2.2 Examples of Solving Fermionic Bath with Fermionic NMQSD Equation
  • 10.2.3 Summary
  • 10.3 NMQSD Theory for a Quantum System Coupled to a Hybrid Bath
  • 10.3.1 Hybrid Baths: Commutative and Anti-commutative Cases
  • 10.3.2 Commutative Hybrid Bath
  • 10.3.3 Anti-commutative Hybrid Bath
  • 10.3.4 Summary
  • 10.4 Conclusion
  • 10.5 Appendix: Grassmann Algebra and Fermionic Coherent State
  • 11 Synthetic Spin-Orbit-Coupling in Ultracold Atomic Gases and Topological Superfluids
  • 11.1 Introduction
  • 11.2 Spin-Orbit-Coupled Bose-Einstein Condensate
  • 11.2.1 Synthetic Spin-Orbit-Coupling
  • 11.2.2 Mean-Field Description
  • 11.2.3 Hydrodynamic Theory
  • 11.2.4 Low-Energy Collective Modes.
  • 11.3 Spin-Orbit-Coupled Fermi Gas and Topological Superfluid.
ISBN
3-030-93460-8
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information