Dissipative optical solitons / Mário F. S. Ferreira.

Author
Ferreira, Mário F. S. [Browse]
Format
Book
Language
English
Published/​Created
  • Cham, Switzerland : Springer, [2022]
  • ©2022
Description
1 online resource (369 pages)

Details

Subject(s)
Series
Source of description
Description based on print version record.
Contents
  • Intro
  • Contents
  • Contributors
  • Chapter 1: Dissipative Optical Solitons: An Introduction
  • 1.1 Solitary Waves
  • 1.2 Solitons in Optical Fibers
  • 1.3 The Complex Ginzburg-Landau Equation
  • 1.4 Dissipative Solitons
  • 1.5 Dissipative Soliton Molecules
  • 1.6 Recent Experimental Results on Pulsating Dissipative Solitons
  • References
  • Chapter 2: Dissipative Solitons in Passively Mode-Locked Lasers
  • 2.1 From Solitons to Dissipative Solitons in Ultrafast Lasers
  • 2.1.1 Early Advances Toward Soliton Lasers
  • 2.1.2 Reconsidering the Value of Dissipation in Lasers
  • 2.2 Signatures of Dissipative Soliton Dynamics
  • 2.3 Dissipative Soliton Molecules
  • 2.3.1 The Wealth of Soliton Interaction Processes Within a Laser Cavity
  • 2.3.2 From Stationary to Pulsating Soliton Molecules
  • 2.4 Toward Incoherent Dissipative Solitons
  • 2.5 Summary and Prospects
  • Chapter 3: Dissipative Soliton Buildup Dynamics
  • 3.1 Introduction
  • 3.2 Conventional Soliton Buildup Dynamics in an Anomalous Dispersion Fiber Laser
  • 3.3 Dissipative Solitons Buildup Dynamics in a Normal Dispersion Fiber Laser
  • 3.4 Dissipative Soliton Buildup Dynamics in a Bidirectional Fiber Laser with Net-Normal Dispersion
  • 3.5 Buildup Dynamics of Dissipative Soliton Molecules
  • 3.6 Conclusion
  • Chapter 4: Dissipative Soliton Resonance
  • 4.1 Introduction
  • 4.1.1 Numerical Approach: Propagation in an Oscillator with a Saturable Absorber (SA)
  • 4.1.2 DSR Pulses in Passively Mode-Locked Fiber Lasers
  • 4.1.2.1 Experimental Features of DSR Pulses
  • 4.1.2.2 Control of Pulse Characteristics in Dual-Amplifier Configuration
  • 4.2 Multi-pulsing Instabilities in DSR Regime
  • 4.3 Chapter Summary
  • Chapter 5: Ultra-Short High-Amplitude Dissipative Solitons
  • 5.1 Introduction
  • 5.2 The Cubic-Quintic Complex Ginzburg-Landau Equation.
  • 5.3 Soliton Perturbation Theory
  • 5.4 Method of Moments
  • 5.5 Very-High Amplitude CGLE Solitons
  • 5.6 Effects of Dispersion
  • 5.7 Impact of Higher-Order Effects
  • 5.7.1 Results of the Soliton Perturbation Theory
  • 5.7.2 Linear Stability Analysis
  • 5.7.3 Numerical Results
  • 5.8 Conclusions
  • Chapter 6: Vector Dissipative Solitons
  • 6.1 Introduction
  • 6.2 DS Trapping in Fiber Lasers
  • 6.3 Various Forms of VDSs
  • 6.3.1 High-Order VDSs
  • 6.3.2 Dark-Bright VDSs
  • 6.3.3 Vector Soliton Molecules
  • 6.3.4 Vector Noise-Like Pulses
  • 6.4 Real-Time Dynamics of VDSs
  • 6.4.1 Dispersive Fourier Transform Based Polarization Resolved Analysis
  • 6.4.2 Real-Time Polarization Dynamics of VDSs
  • 6.4.3 Pulsation of VDSs
  • 6.5 Conclusions
  • Chapter 7: Dynamics of Pulsating Dissipative Solitons
  • 7.1 Introduction
  • 7.2 Theory of Pulsating Dissipative Solitons
  • 7.2.1 Numerical Analysis of Pulsation Dynamics
  • 7.2.2 Semi-Analytical Analysis of Pulsation Dynamics
  • 7.3 Transient Behaviors of Pulsating Dissipative Solitons
  • 7.3.1 Stationary Soliton
  • 7.3.2 Single-Period Pulsating Soliton
  • 7.3.3 Double-Period Pulsating Soliton
  • 7.3.4 Periodic Soliton Explosion
  • 7.3.5 Multi-Soliton Synchronous Pulsation
  • 7.3.6 Pulsating Soliton Molecule
  • 7.3.7 Multi-Soliton Asynchronous Pulsation
  • Chapter 8: Raman Dissipative Solitons
  • 8.1 Introduction
  • 8.2 Principle of Generation
  • 8.3 Simulation
  • 8.4 Brief Theory
  • 8.5 Applications
  • Chapter 9: L-Band Wavelength Tunable Dissipative Soliton Fiber Laser
  • 9.1 Introduction
  • 9.2 Laser Design
  • 9.3 Methods of Wavelength Tuning
  • 9.3.1 Wavelength Tuning Based on Spectral Birefringence Filter with 45Tilted Fiber Grating
  • 9.3.1.1 Laser Setup and Device Characteristics
  • 9.3.1.2 Experimental Results and Discussions.
  • 9.3.2 Wavelength Tuning Based on Tunable Filter with Fiber Taper
  • 9.3.2.1 Laser Setup and Device Characteristics
  • 9.3.2.2 Experimental Results and Discussions
  • 9.3.3 Wavelength Tuning Based on Cavity Loss Control with Commercial Mechanical VOA
  • 9.3.3.1 Laser Setup and Device Characteristics
  • 9.3.3.2 Experimental Results and Discussions
  • 9.3.4 Wavelength Tuning Based on Cavity Loss Control with Taper-Type VOA
  • 9.3.4.1 Laser Setup and Device Property
  • 9.3.4.2 Experimental Results and Discussions
  • 9.3.5 Comparison with Different Wavelength Tuning Methods
  • 9.4 Conclusion
  • Chapter 10: Multiplexed Dissipative Soliton Fiber Lasers
  • 10.1 Introduction
  • 10.2 Bidirectional Multiplexed Dissipative Soliton Fiber Lasers
  • 10.2.1 SESAM
  • 10.2.2 CNT
  • 10.2.3 Graphene
  • 10.2.4 NPR
  • 10.2.5 Hybrid
  • 10.3 Wavelength Multiplexed Dissipative Soliton Fiber Lasers
  • 10.4 Polarization Multiplexed Dissipative Soliton Fiber Lasers
  • 10.5 Conclusion and Outlook
  • Chapter 11: Multi-soliton Complex in Nonlinear Cavities
  • 11.1 Introduction
  • 11.2 Multi-soliton Complex in Mode-Locked Fiber Lasers
  • 11.2.1 Multi-soliton States in Mode-Locked Lasers and Their Interaction
  • 11.2.1.1 Soliton Molecule
  • 11.2.1.2 Pulse Bunching and Harmonic Mode-Locking
  • 11.2.1.3 Other States
  • 11.2.2 Rapid Measurements of Multi-soliton Dynamics in Mode-Locked Fiber Lasers
  • 11.2.2.1 Multi-soliton in Spatiotemporal Mode-Locked Fiber Lasers
  • 11.3 Mutli-soliton Complex in Microcavities
  • 11.3.1 Basic Principle of Coherently Pumped Solitons
  • 11.3.2 Multi-soliton States and Their Interactions in Microcavities
  • 11.3.2.1 Dispersive Wave Emission in Microcavities
  • 11.3.2.2 From Soliton Molecules to Soliton Crystals in Microcavities
  • 11.3.2.3 Multi-soliton State Using Advanced Pumping Schemes
  • 11.4 Summary and Discussions.
  • Chapter 12: Dissipative Solitons in Microresonators
  • 12.1 Introduction
  • 12.2 Modeling
  • 12.2.1 Higher-Order Dispersion
  • 12.2.2 Raman Effect
  • 12.3 Dispersion Engineered Cavity Dynamics
  • 12.3.1 Capabilities of Dispersion Engineering
  • 12.3.2 Advanced Control of Dissipative Soliton Dynamics
  • 12.3.3 Novel Phenomena in Dispersion-Tailored Microring Resonators
  • 12.4 Soliton Comb Generation Schemes
  • 12.4.1 Frequency Scanning
  • 12.4.2 Power Kicking
  • 12.4.3 Thermal Tuning
  • 12.4.4 Self-Injection Locking and Laser-Based Configurations
  • 12.5 Nonlinear Dynamics of DKS
  • 12.6 Applications
  • Chapter 13: Vector Vortex Solitons and Soliton Control in Vertical-Cavity Surface-Emitting Lasers
  • 13.1 Introduction
  • 13.2 Mechanism of Bistability in Lasers with Frequency-Selective Feedback
  • 13.3 Vector Vortex Solitons
  • 13.3.1 What Are Vector Vortex Beams?
  • 13.3.2 Experimental Setup
  • 13.3.3 Principle Observations
  • 13.3.4 Complex Hysteresis Loops
  • 13.3.5 Influencing Polarization Selection by Intra-Cavity Waveplates
  • 13.3.6 Interpretation
  • 13.4 Flip-Flop Operation of Laser Cavity Solitons
  • 13.4.1 Soliton Control in Systems with and Without Holding Beams
  • 13.4.2 Experimental Setup
  • 13.4.3 Experimental Results
  • 13.5 Conclusions and Outlook
  • Chapter 14: Discrete Solitons of the Ginzburg-Landau Equation
  • 14.1 Introduction
  • 14.2 The Model and Linear Dispersion Relation
  • 14.3 Dissipative Solitons of the DGLE
  • 14.4 Saturable Nonlinearity and MI Analysis
  • 14.5 Exact Dissipative Discrete Soliton Solutions
  • 14.6 Conclusion
  • Chapter 15: Noise-Like Pulses in Mode-Locked Fiber Lasers
  • 15.1 Introduction
  • 15.2 Examples of NLP Lasers
  • 15.3 Mechanisms of NLP Formation
  • 15.3.1 Effect of Cavity Birefringence.
  • 15.3.2 Soliton Collapse Due to Reverse Saturable Absorption
  • 15.3.3 Raman-Driven NLP
  • 15.3.4 NLP Formation in Amplifiers
  • 15.4 Dynamics, Coherence and Stability of NLP Lasers
  • 15.5 Applications of NLP Lasers
  • 15.5.1 Metrology
  • 15.5.2 Spectroscopy
  • 15.5.3 Spectral Broadening and Supercontinuum Generation
  • 15.5.4 Optical Coherence Tomography
  • 15.5.5 Nonlinear Microscopy
  • 15.6 Summary
  • Chapter 16: Dissipative Rogue Waves
  • 16.1 Introduction
  • 16.1.1 Rogue Waves in the Oceans
  • 16.1.2 Introduction of Optical Rogue Waves
  • 16.1.3 Real-Time Techniques for Observing Optical Rogue Waves
  • 16.1.3.1 Dispersive-Fourier-Transform-Based Ultrafast Spectroscopy
  • 16.1.3.2 Time Magnifier
  • 16.2 Dissipative Rogue Waves
  • 16.2.1 Rogue Waves in Dissipative Systems
  • 16.2.2 Dissipative Rogue Waves in Ultrafast Lasers
  • 16.2.3 Dissipative Rogue Waves in Microresonators
  • 16.2.4 Dissipative Rogue Waves in Extended Systems
  • 16.2.5 Optical Polarization Rogue Waves
  • 16.3 Generating Mechanisms of Dissipative Rogue Waves
  • 16.3.1 Two Interpretations
  • 16.3.2 Are the Dissipative Rogue Waves Predictable?
  • References.
ISBN
3-030-97493-6
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information