LEADER 03789nam a2200589 i 4500001 99125564701206421 005 20241120175426.0 006 m eo d 007 cr ||||||||||| 008 210824s2021 pau fob 001 0 eng d 010 2021011352 020 1-61197-661-8 024 7 10.1137/1.9781611976618 |2doi 028 50 OT174 |bSIAM 035 (CKB)4100000011998608 035 (NjHacI)994100000011998608 035 (CaBNVSL)thg00082578 035 (OCoLC)1248600446 035 (SIAM)9781611976618 035 (EXLCZ)994100000011998608 040 CaBNVSL |beng |erda |cCaBNVSL |dCaBNVSL 050 4 QA372 |b.U33 2021eb 072 7 MAT003000 |2bisacsh 072 7 MAT007020 |2bisacsh 072 7 MAT04100 |2bisacsh 072 7 MAT042000 |2bisacsh 072 7 COM077000 |2bisacsh 082 04 515.355 |223 100 1 Uecker, Hannes, |d1970- |eauthor. 245 10 Numerical continuation and bifurcation in nonlinear PDEs / |cHannes Uecker. 264 1 Philadelphia, Pennsylvania : |bSociety for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), |c[2021] 300 1 online resource (xvi, 364 pages) : |billustrations 336 text |btxt |2rdacontent 337 computer |bc |2rdamedia 338 online resource |bcr |2rdacarrier 490 1 Other titles in applied mathematics; |v174 504 Includes bibliographical references (pages 341-357) and index. 505 0 Getting started -- Liapunov-Schmidt reduction and local bifurcations -- Numerics for continuation and bifurcation -- Finite elements -- Setup and overview of pde2path -- Allen-Cahn equations as model problems -- Examples of Hopf bifurcations -- Pattern formation in 4th order equations -- Reaction-diffusion systems -- Problems on curved surfaces -- Applications in optimal control -- Appendix A. pde2path organization. 520 3 This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. Numerical Continuation and Bifurcation in Nonlinear PDEs provides a concise review of some analytical background and numerical methods, explains the free MATLAB package pde2path by using a large variety of examples, and contains demo codes that can be easily adapted to the reader's given problem. This book will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation. 588 Description based on title page of print version. 530 Also available in print version. 538 Mode of access: World Wide Web. 538 System requirements: Adobe Acrobat Reader. 650 0 Differential equations, Nonlinear |xNumerical solutions. 650 7 MATHEMATICS / Applied. |2bisacsh 650 7 MATHEMATICS / Differential Equations / Partial. |2bisacsh 650 7 MATHEMATICS / Applied / Numerical Analysis. |2bisacsh 650 7 MATHEMATICS / Applied / Optimization. |2bisacsh 650 7 COMPUTERS / Mathematical & Statistical Software. |2bisacsh 776 |z1-61197-660-X 710 2 Society for Industrial and Applied Mathematics, |epublisher. 830 0 Other titles in applied mathematics. 906 BOOK