Soft computing, theories and applications : proceedings of SoCTA 2020 / Tarun K. Sharma [and three others].

Author
Sharma, Tarun K. [Browse]
Format
Book
Language
English
Published/​Created
  • Gateway East, Singapore : Springer, [2021]
  • ©2021
Description
1 online resource (572 pages)

Details

Subject(s)
Series
Bibliographic references
Includes bibliographical references and index.
Source of description
Description based on print version record.
Contents
  • Intro
  • Preface
  • About SoCTA Series
  • About STEM-Research Society
  • Contents
  • About the Editors
  • A Study on the Effect of Optimal Control Strategies: An SIR Model with Delayed Logistic Growth
  • 1 Introduction
  • 2 Mathematical Model
  • 3 Boundedness of System
  • 4 Optimal Control for Delayed System
  • 4.1 Existence of Optimal Control Pair
  • 4.2 Characterization of Optimal Control
  • 5 Numerical Section
  • 6 Conclusion
  • References
  • Emperor Penguin Optimized Clustering for Improved Multilevel Hierarchical Routing in Wireless Sensor Networks
  • 2 Related Work
  • 3 Proposed Methodology
  • 3.1 System Model
  • 3.2 Energy Model
  • 3.3 Clustering by EPO
  • 4 Results and Discussion
  • 5 Conclusion
  • A Collaborative Filtering-Based Recommendation System for Preliminary Detection of COVID-19
  • 3 Methodology
  • 3.1 Creating User Item Rating Matrix
  • 3.2 Similarity Computation
  • 3.3 Selecting Nearest Neighbours
  • 3.4 Generating Prediction
  • 3.5 Providing Recommendations
  • 5 Conclusion and Future Work
  • Frequencies of Nonuniform Triangular Plate with Two-Dimensional Parabolic Temperature
  • 2 Analysis
  • 3 Results and Discussions
  • 4 Results Comparison
  • 5 Conclusions
  • Machine Learning in Finance: Towards Online Prediction of Loan Defaults Using Sequential Data with LSTMs
  • 2 Preliminaries and Related Work
  • 2.1 Loan Default Prediction Problem
  • 2.2 Classifiers for Loan Default Prediction
  • 2.3 Ensemble Learning
  • 2.4 Recurrent Neural Network (RNN)
  • 3.1 Data Preparation and Cleaning
  • 3.2 Method 1-RNN-Based Ensemble
  • 3.3 Method 2-Hybrid DNN-RNN
  • 4 Evaluation and Results
  • References.
  • Use of Marker-Controlled Watershed Segmentation to Classify Cumulonimbus Cloud with Pre-trained CNN
  • 2 Different Cloud Types
  • 3 Marker-Controlled Watershed Segmentation
  • 4 Pre-trained CNN (ALEXNET)
  • 5 Proposed Method
  • 6 Implementation
  • 7 Experimental Results
  • 8 Conclusion
  • Optimizing Drug Schedule for Cell-Cycle Specific Cancer Chemotherapy
  • 2 Mathematical Formulation of Cell Cycle-Specific Chemotherapy
  • 3 Problem Formulation
  • 4 Non-dominated Sorting Genetic Algorithm-II (NSGA-II)
  • 5 Simulations and Results
  • A Review of Feature Extraction Techniques for EEG-Based Emotion Recognition System
  • 2 Search Process
  • 3 EEG-Based Emotion Recognition System
  • 4 EEG-Based Feature Extraction Methods
  • 4.1 Time Statistical Domain Features
  • 4.2 Frequency Domain
  • 4.3 Time-Frequency Domain
  • 5 Discussions
  • Task Scheduling and Load Balancing Techniques Using Genetic Algorithm in Cloud Computing
  • 2.1 Task Scheduling Problem
  • 2.2 Load Balancing
  • 3 Proposed Algorithm
  • 4 Performance Evaluation
  • 4.1 Completion Time
  • 4.2 Execution Cost
  • Riemann Problem in Generalized Chaplygin Gas
  • 2 Governing Equations
  • 3 Numerical Schemes
  • 3.1 HLL Scheme
  • 4 Results and Discussions
  • 4.1 Solution of Riemann Problem by HLL Scheme
  • 4.2 Nonlinear Wave Propagation
  • Appendix
  • Flux Vector Splitting
  • Vanleer Scheme
  • Teaching-Learning Perception Toward Blended E-learning Portals During Pandemic Lockdown
  • 1.1 Overview of Students Enrollment
  • 2 Review of Literature
  • 3 Objectives of the Study
  • 3.1 Research Methodology
  • 4 Data Analysis and Interpretation
  • 5 Conclusion.
  • An Alternative Approach to Compress Text Files Using Fibonacci Sequence and Lucas Series
  • 1 Literature Review
  • 1.1 Introduction
  • 1.2 Lossless Data Compression
  • 2 Proposed Concepts
  • 2.1 Fibonacci Sequence
  • 2.2 Lucas Number
  • 2.3 Lucas Representation
  • 3 Compression and Decompression
  • 3.1 Compression Technique
  • 3.2 Decompression Technique
  • 3.3 Calculation
  • 4 Performance of Proposed Algorithm
  • 5 Graphical Representation of Space Complexity
  • Smart Bin Management System with IoT-Enabled Technology
  • 3 Architecture of Smart Bin Management System
  • 3.1 Data Gathering via Nodes
  • 3.2 Processing and Analytics
  • 3.3 Projection and Action of Event
  • 4 Architecture of Smart Bin Management System
  • 4.1 Hardware Implementation
  • 4.2 Software and Cloud
  • 4.3 Real-Time Data Monitoring Console
  • 5 Efficiency over Other Bin Management System
  • Non-living Caretaker as a Medicine Box Based on Medical Equipment Using Internet of Things
  • 1.1 Objective
  • 1.2 Scope
  • 2.1 Motivation
  • 2.2 Related Work
  • 3 Proposed Model
  • 3.1 Modules Description
  • 4 Simulation and Result
  • 5 Conclusion and Future Direction
  • Trends and Advancements in Genome Data Compression and Processing Algorithms
  • 2 Genome Data Compression: A Literature Survey
  • 3 Genome Data Processing: A Literature Survey
  • 3.1 Repeat Information-Based Approaches for Genomic Data Processing
  • 3.2 Index-Based Approaches for Genomic Data Processing
  • 4 Research Gaps in Genome Data Compression and Processing
  • Identification of Skin Diseases Using Convolutional Neural Network
  • 2 Methodology
  • 2.1 Data Collection.
  • 2.2 Selection of Deep Learning Models
  • 2.3 Performance Metrics for Classifiers
  • 3 Implementation of CNN
  • 4 Result
  • Gene Sequence Classification Using K-mer Decomposition and Soft-Computing-Based Approach
  • 2 Proposed Method
  • 2.1 Collection of Data and Preparation of Datasets
  • 2.2 K-mer Decompositions of Gene Sequence
  • 2.3 Training
  • 2.4 Testing
  • 3 Result Discussions
  • 4 Conclusion
  • Deep CNN Model for Identification of Fruit Disease
  • 3 The Proposed Method
  • 3.1 Convolutional Neural Network
  • 4 Experimental Analysis
  • 4.1 Changing of the Dataset
  • 4.2 Analysis of the Three-Layer Implementations
  • A Survey on Potential Techniques and Issues in 6G Communication
  • 2 Evolution of Mobile Communication Network
  • 2.1 1G: First Generation
  • 2.2 2G: Global System for Mobile Communication
  • 2.3 3G: Universal Mobile Telecommunication System
  • 2.4 4G: Long-Term Evolution
  • 2.5 5G: Green Communication
  • 3 6G Green Communication: Vision
  • 4 Promising Techniques for 6G Communication
  • 4.1 Spectrum Communication Technique
  • 4.2 New Communication Paradigm
  • 4.3 Fundamental Techniques
  • 5 Problems to Be Resolve in 6G Communication and Their Promising Solutions
  • 5.1 Power Supply Issue
  • 5.2 Network Security
  • 5.3 Hardware Design Issue
  • Impact of COVID-19 in Architecture: A Survey-Based Method for Measuring and Understanding
  • 2 Literature Review
  • 3 Materials and Methods
  • 4 Results
  • 4.1 Practicing Architects Opinion
  • 4.2 Bachelor of Architecture Students' Feedback
  • 4.3 Architectural Academicians View Point
  • Classification of Human Activities Using Support Vector Machine-A Review.
  • 3 Methods
  • 3.1 Smartphone Sensors
  • 3.2 Data Set
  • 3.3 Feature Extraction
  • 3.4 Classification Algorithms
  • 3.5 Applications of Human Activity Recognition
  • 4 Discussion
  • Smartphone Inertial Sensors-Based Human Activity Detection Using Support Vector Machine
  • 3 Proposed Approach
  • 3.2 Dataset
  • 3.3 Preprocessing of Dataset
  • 3.4 Classification Algorithm-Support Vector Machine
  • 475K Dataset
  • 3 Understanding Dataset
  • 3.1 Dataset Details
  • 4 Validation
  • 5 Future Scope
  • 6 Conclusions
  • Docker Security: Architecture, Threat Model, and Best Practices
  • 2 Docker Architecture
  • 2.1 Docker Daemon
  • 2.2 Docker Client
  • 2.3 Docker Registry
  • 3 Threat Model
  • 4 Docker Security Issues and Solution
  • 4.1 Issues Arising Out of Images
  • 4.2 Issues Arising Out of Docker Misconfiguration
  • 4.3 Issues Arising Out of Network
  • 5 Case Study
  • 5.1 System Configuration
  • 5.2 Attack Scenario: 1
  • 5.3 Attack Scenario: 2
  • Breast DCE-MRI Segmentation for Lesion Detection Using Clustering with Multi-verse Optimization Algorithm
  • 1.1 Background
  • 1.2 Related Works
  • 1.3 Objectives
  • 2 Materials and Methods
  • 2.1 DCE-MRI Dataset
  • 2.2 Proposed Method
  • 3 Results and Discussion
  • Using Linguistically Non-local Punjabi Queries to Search the Global Web
  • 3.1 Keyword Extraction Module
  • 3.2 Query Reformulation Module
  • 4 Test and Results
  • A Supervised Learning Approach by Machine Learning Algorithms to Predict Diabetes Mellitus (DM) Risk Score.
ISBN
981-16-1696-5
OCLC
1259588727
Statement on responsible collection description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information