Bayesian reasoning and Gaussian processes for machine learning applications / edited by Hemachandran K, Shubham Tayal, Preetha Mary George, Parveen Singla, Utku Kose.

Format
Book
Language
English
Εdition
First edition.
Published/​Created
  • Boca Raton : CRC Press, Taylor & Francis Group, 2022.
  • ©2022
Description
xiv, 133 pages : illustrations ; 27 cm

Details

Subject(s)
Editor
Summary note
"The book Bayesian Reasoning and Gaussian Processes for Machine Learning Applications talks about Bayesian Reasoning and Gaussian Processes in machine learning applications. Bayesian methods are applied in many areas such as game development, decision making and drug discovery. It is very effective for machine learning algorithms for handling missing data and for extracting information from small datasets. This book introduces a statistical background which is needed to understand continuous distributions and it gives an understanding on how learning can be viewed from a probabilistic framework. The chapters of the book progress into machine learning topics such as Belief Network, Bayesian Reinforcement Learning etc., which is followed by Gaussian Process Introduction, Classification, Regression, Covariance and Performance Analysis of GP with other models. This book is aimed primarily at graduates, researchers and professionals in the field of data science and machine learning"-- Provided by publisher.
Notes
"A Chapman & Hall Book" -- from cover.
Bibliographic references
Includes bibliographical references and index.
Contents
Introduction to naive Bayes and a review on its subtypes with applications / Eguturi Manjith Kumar Reddy, Akash Gurrala, Vasireddy Bindu Hasitha, Korupalli V. Rajesh Kumar -- A review on different regression analysis in supervised learning / K. Sudhaman, Mahesh Akuthota and Sandip Kumar Chaurasiya -- Methods to predict the performance analysis of various machine learning algorithms / M. Saritha, M. Lavanya and M. Narendra Reddy -- A viewpoint on belief networks and their applications / G.S. Sivakumar, P. Suneetha, V. Sailaja and Pokala Pranay Kumar -- Reinforcement learning using Bayesian algorithms with applications / H. Raghupathi, G. Ravi and Rajan Maduri -- Alerting system for gas leakage in pipeline / Nilesh Deotale, Pragya Chandra, Prathamesh Dherange, Pratiksha Repaswal, Saibaba V. More -- New non-parametric models for biological networks / Deniz Seçilmiş, Melih Ağraz, Vilda Purutçuoğlu -- Generating various types of graphical models via MARS / Ezgi Ayyıldız and Vilda Purutçuoğlu -- Financial applications of Gaussian processes and Bayesian optimization / Syed Hasan Jafar -- Bayesian network inference on diabetes risk prediction data / Mustafa Özgür Cingiz.
ISBN
  • 9780367758479 (hardcover)
  • 0367758474 (hardcover)
  • 9780367758493 (paperback)
  • 0367758490 (paperback)
LCCN
2021052540
OCLC
1280277681
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view