Functional polymer nanocomposites for wastewater treatment / edited by Mpitloane Joseph Hato and Suprakas Sinha Ray.

Format
Book
Language
English
Εdition
1st edition.
Published/​Created
  • Cham, Switzerland : Springer, [2022]
  • ©2022
Description
1 online resource (267 pages) : (XVI, 254 p. 60 illus., 52 illus. in color.)

Details

Subject(s)
Editor
Series
Summary note
This book provides an overview of the latest advances in applications of nanocomposites in wastewater treatment. This book is dedicated to recent developments in the application of polymer nanocomposites to wastewater treatment. Based on their morphology and tailored compositions, polymer nanocomposites provide powerful tools for environmental remediation via selective adsorption of contaminants in complex environmental matrices.
Bibliographic references
Includes bibliographical references and index.
Source of description
Description based on print version record.
Contents
  • Intro
  • Preface
  • Contents
  • Editors and Contributors
  • About the Editors
  • Contributors
  • 1 Nanocellulose-Graphene Oxide-Based Nanocomposite for Adsorptive Water Treatment
  • 1.1 Introduction
  • 1.2 Water Treatment and Approaches
  • 1.2.1 Adsorption Wastewater Treatment
  • 1.2.2 Filtration Wastewater Treatment
  • 1.2.3 Catalytic Wastewater Treatment
  • 1.2.4 Other Wastewater Treatment Approaches
  • 1.3 Nanocellulose
  • 1.3.1 Introduction
  • 1.3.2 Structure, Source-Based Overview, and Nomenclature with Categories
  • 1.3.3 Preparation Approaches for NCs
  • 1.4 Graphene Oxide/Graphite Oxide
  • 1.4.1 Preparation Approaches for Graphite/Graphene Oxide
  • 1.4.2 Structural Properties of GiO/GO
  • 1.5 Nanocellulose-Graphene Oxide-Based Nanocomposites
  • 1.5.1 NC-GO-Based Nanocomposites
  • 1.5.2 Nanocellulose-rGO Nanocomposites
  • 1.5.3 Adsorption Isotherms
  • 1.5.4 Vital Parameters in Adsorption Studies
  • 1.5.5 Kinetics of Adsorption
  • 1.5.6 Adsorption Thermodynamics
  • 1.5.7 Nanocellulose GO-Based Adsorbents Mechanism with Wastewater Pollutants
  • 1.6 Adsorption-Based Water Treatment Application Using Nanocellulose-Graphene Oxide-Based (NGON) Nanocomposites
  • 1.6.1 Removal of Heavy Metal Ions
  • 1.6.2 Removal of Toxic Dyes
  • 1.6.3 Removal of Radioactive Residues/Element-Ions
  • 1.6.4 Removal of Oils
  • 1.6.5 Residual Antibiotics
  • 1.6.6 Pesticide Adsorption
  • 1.7 Conclusions, Limitations, and Future Perspectives
  • References
  • 2 Recent Progress in Polysaccharide-Based Hydrogel Beads as Adsorbent for Water Pollution Remediation
  • 2.1 Introduction
  • 2.2 Polysaccharides
  • 2.2.1 Sodium Alginate
  • 2.2.2 Starch
  • 2.2.3 Chitosan
  • 2.2.4 Cellulose
  • 2.3 Polysaccharide-Based Hydrogel Beads Preparation
  • 2.3.1 Dropping Method: Ionic Cross-Linking
  • 2.3.2 Emulsion Solidification Method
  • 2.4 Water Purification Through Adsorption Systems.
  • 2.4.1 Batch/Discontinuous Adsorption System
  • 2.4.2 Dynamic/Continuous Adsorption System
  • 2.5 Application of Polysaccharide-Based Hydrogel Beads in Wastewater Treatment
  • 2.5.1 Polysaccharide-Based Hydrogel Beads
  • 2.5.2 Polysaccharide-Based Hydrogel Composite Beads
  • 2.6 Conclusion and Future Outlook
  • 3 Flocculation of Waste Water Using Architectural Copolymers: Recent Advancement and Future Perspective
  • 3.1 Introduction
  • 3.2 Coagulation Versus Flocculation
  • 3.2.1 Inorganic Coagulants
  • 3.2.2 Synthetic Organic Flocculants
  • 3.2.3 Steps Involving Flocculation
  • 3.2.4 Mechanism of Flocculation
  • 3.3 Charge Neutralization
  • 3.4 Polymer Bridging
  • 3.5 Electrostatic Patch
  • 3.6 Mechanism Followed by Natural Bio-Flocculants
  • 3.7 Mechanism Followed by Grafted Polymeric Flocculants
  • 3.8 Factors Affecting Flocculation
  • 3.8.1 Molecular Weight of Polymers and Charge Density
  • 3.8.2 Flocculants Dosage and Condition of Mixing
  • 3.8.3 Shear Effect on Flocs
  • 3.8.4 Ionic Strength of the Solution
  • 3.8.5 Effect of pH
  • 3.8.6 Effect of Particle Size
  • 3.8.7 Effect of Temperature
  • 3.9 Flocculation Modeling
  • 3.10 Kinetics of Aggregation of Particles
  • 3.11 Collision Frequency of Particles
  • 3.12 Literature Survey
  • 3.13 Selection of Flocculants
  • 3.14 Role of Architectural Polymers in Flocculation
  • 3.15 Graft Copolymer Nanocomposite as Flocculants
  • 3.16 Conclusion
  • 4 Sustainable Bio-Polymer-Based Nanocomposites for Wastewater Treatment
  • 4.1 Introduction
  • 4.2 Types of Biopolymers Used for Treating Wastewater
  • 4.2.1 Polysaccharides
  • 4.2.2 Polypeptides
  • 4.2.3 Polyphenols
  • 4.2.4 Polynucleotides (DNA)
  • 4.3 Application of Biopolymers in Wastewater Treatment
  • 4.4 Different Methods of Modification and Architecture of Biopolymers
  • 4.5 Bionanocomposites for Wastewater Treatment.
  • 4.6 Adsorption Mechanism
  • 4.7 Sustainability Criteria for Wastewater Treatment
  • 4.7.1 Treatment Efficiency
  • 4.7.2 The Production Cost of Water Treatment
  • 4.7.3 Processing Treatment Cost-Spent Money Economy Impact
  • 4.7.4 The Production Cost of Biopolymers
  • 4.7.5 Environment Effect and Eco-Friendly
  • 4.7.6 Health and Safety Risks
  • 4.8 Practical Snag of Wastewater-Treatment Method
  • 4.9 Conclusions
  • 5 Electrospun Nanofiber-Based Composites for Arsenic Removal in Water and Wastewater
  • 5.1 Introduction and Background
  • 5.2 Environmental Contamination by Heavy Metals
  • 5.3 Arsenic Metal
  • 5.4 Methods for the Removal of Arsenic
  • 5.4.1 Conventional Methods
  • 5.5 Electrospun Nanofibers
  • 5.6 Reported Work on the Removal of Arsenic Using Nanofibers/Composite Nanofibers
  • 5.6.1 Polymers/Composites Used for Fabrication of Nanofibers and Their Properties
  • 5.6.2 Performance Characteristics of NFs in the Removal of Arsenic from Water
  • 5.7 Conclusion and Perspectives
  • 6 Functionalized Biopolymer Nanocomposites for the Degradation of Textile Dyes
  • 6.1 Introduction
  • 6.2 Classification of Biopolymers
  • 6.3 Biopolymer Nanocomposites
  • 6.3.1 Introduction to Nanocomposites
  • 6.3.2 Biopolymer-Noble Metal or Metal Nanocomposites
  • 6.3.3 Biopolymer-Nonmetal Nanocomposites
  • 6.3.4 Biopolymer-Metal Oxide Nanocomposites
  • 6.3.5 Biopolymer Metal/Metal Oxide Nanocomposites
  • 6.3.6 Biopolymer-Metal Sulfide Nanocomposites
  • 6.3.7 Other Types of Biopolymer Nanocomposites
  • 6.4 Conclusions
  • 7 Sequestration of Organic Dyes from Wastewater Using Hydrogel Nanocomposites
  • 7.1 Introduction
  • 7.2 Hydrogels
  • 7.2.1 Background
  • 7.2.2 Synthesis of Hydrogels
  • 7.2.3 Hybrid Hydrogels
  • 7.3 Conclusions
  • References.
  • 8 The Effect of Zeolitic Imidazole Framework-8@Graphene Oxide on the Performance of Polymeric Membranes Used for Wastewater Treatment
  • 8.1 Introduction
  • 8.2 General Description of Metal-Organic Framework (MOFs)
  • 8.2.1 Isoreticular Metal-Organic Frameworks (IRMOFs)
  • 8.2.2 Zeolitic Imidazolate Frameworks (ZIFs)
  • 8.2.3 Materials of Institute Lavoisier Frameworks (MILs)
  • 8.2.4 University of Oslo (UiO)
  • 8.2.5 Summary of MOFs
  • 8.3 Factors to Consider When Choosing MOFs in Water Application
  • 8.3.1 MOFs Should Have High Water Stability
  • 8.3.2 Suitable Pore Size for MOFs Appropriate for Use in Membrane Technology
  • 8.3.3 Importance of Uniform Dispersibility of Fillers in Composite Membranes
  • 8.4 ZIF-8@GO Fillers Used in Membrane Technology for Wastewater Treatment
  • 8.4.1 Morphology
  • 8.4.2 Membrane Wettability
  • 8.4.3 Water Flux
  • 8.4.4 Fouling Resistance
  • 8.4.5 Wastewater Treatment
  • 8.5 Conclusion
  • Index.
ISBN
3-030-94995-8
OCLC
  • 1302012625
  • 1308495129
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information