Skip to search
Skip to main content
Search in
Keyword
Title (keyword)
Author (keyword)
Subject (keyword)
Title starts with
Subject (browse)
Author (browse)
Author (sorted by title)
Call number (browse)
search for
Search
Advanced Search
Bookmarks
(
0
)
Princeton University Library Catalog
Start over
Cite
Send
to
SMS
Email
EndNote
RefWorks
RIS
Printer
Bookmark
Fractional differential equations : an approach via fractional derivatives / Bangti Jin.
Author
Jin, Bangti
[Browse]
Format
Book
Language
English
Published/Created
Cham, Switzerland : Springer, [2021]
©2021
Description
1 online resource (377 pages)
Details
Subject(s)
Fractional differential equations
[Browse]
Series
Applied Mathematical Sciences
[More in this series]
Applied Mathematical Sciences ; v.206
[More in this series]
Bibliographic references
Includes bibliographical references and index.
Source of description
Description based on print version record.
Contents
Intro
Preface
Contents
Acronyms
Part I Preliminaries
1 Continuous Time Random Walk
1.1 Random Walk on a Lattice
1.2 Continuous Time Random Walk
1.3 Simulating Continuous Time Random Walk
2 Fractional Calculus
2.1 Gamma Function
2.2 Riemann-Liouville Fractional Integral
2.3 Fractional Derivatives
2.3.1 Riemann-Liouville fractional derivative
2.3.2 Djrbashian-Caputo fractional derivative
2.3.3 Grünwald-Letnikov fractional derivative
3 Mittag-Leffler and Wright Functions
3.1 Mittag-Leffler Function
3.1.1 Basic analytic properties
3.1.2 Mittag-Leffler function Eα,1(-x)
3.2 Wright Function
3.2.1 Basic analytic properties
3.2.2 Wright function Wρ,µ(-x)
3.3 Numerical Algorithms
3.3.1 Mittag-Leffler function Eα,β(z)
3.3.2 Wright function Wρ,µ(x)
Part II Fractional Ordinary Differential Equations
4 Cauchy Problem for Fractional ODEs
4.1 Gronwall's Inequalities
4.2 ODEs with a Riemann-Liouville Fractional Derivative
4.3 ODEs with a Djrbashian-Caputo Fractional Derivative
5 Boundary Value Problem for Fractional ODEs
5.1 Green's Function
5.1.1 Riemann-Liouville case
5.1.2 Djrbashian-Caputo case
5.2 Variational Formulation
5.2.1 One-sided fractional derivatives
5.2.2 Two-sided mixed fractional derivatives
5.3 Fractional Sturm-Liouville Problem
5.3.1 Riemann-Liouville case
5.3.2 Djrbashian-Caputo case
Part III Time-Fractional Diffusion
6 Subdiffusion: Hilbert Space Theory
6.1 Existence and Uniqueness in an Abstract Hilbert Space
6.2 Linear Problems with Time-Independent Coefficients
6.2.1 Solution representation
6.2.2 Existence, uniqueness and regularity
6.3 Linear Problems with Time-Dependent Coefficients
6.4 Nonlinear Subdiffusion
6.4.1 Lipschitz nonlinearity
6.4.2 Allen-Cahn equation.
6.4.3 Compressible Navier-Stokes problem
6.5 Maximum Principles
6.6 Inverse Problems
6.6.1 Backward subdiffusion
6.6.2 Inverse source problems
6.6.3 Determining fractional order
6.6.4 Inverse potential problem
6.7 Numerical Methods
6.7.1 Convolution quadrature
6.7.2 Piecewise polynomial interpolation
7 Subdiffusion: Hölder Space Theory
7.1 Fundamental Solutions
7.1.1 Fundamental solutions
7.1.2 Fractional θ-functions
7.2 Hölder Regularity in One Dimension
7.2.1 Subdiffusion in mathbbR
7.2.2 Subdiffusion in mathbbR+
7.2.3 Subdiffusion on bounded intervals
7.3 Hölder Regularity in Multi-Dimension
7.3.1 Subdiffusion in mathbbRd
7.3.2 Subdiffusion in mathbbRd+
7.3.3 Subdiffusion on bounded domains
A Mathematical Preliminaries
A.1 AC Spaces and Hölder Spaces
A.1.1 AC spaces
A.1.2 Hölder spaces
A.2 Sobolev Spaces
A.2.1 Lebesgue spaces
A.2.2 Sobolev spaces
A.2.3 Fractional Sobolev spaces
A.2.4 s(Ω) spaces
A.2.5 Bochner spaces
A.3 Integral Transforms
A.3.1 Laplace transform
A.3.2 Fourier transform
A.4 Fixed Point Theorems
References
Index.
Show 86 more Contents items
ISBN
3-030-76043-X
OCLC
1261380047
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage.
Read more...
Other views
Staff view
Ask a Question
Suggest a Correction
Report Harmful Language
Supplementary Information
Other versions
Fractional differential equations : an approach via fractional derivatives / Bangti Jin.
id
99125410506406421