Fractional differential equations : an approach via fractional derivatives / Bangti Jin.

Author
Jin, Bangti [Browse]
Format
Book
Language
English
Published/​Created
  • Cham, Switzerland : Springer, [2021]
  • ©2021
Description
1 online resource (377 pages)

Details

Subject(s)
Series
Bibliographic references
Includes bibliographical references and index.
Source of description
Description based on print version record.
Contents
  • Intro
  • Preface
  • Contents
  • Acronyms
  • Part I Preliminaries
  • 1 Continuous Time Random Walk
  • 1.1 Random Walk on a Lattice
  • 1.2 Continuous Time Random Walk
  • 1.3 Simulating Continuous Time Random Walk
  • 2 Fractional Calculus
  • 2.1 Gamma Function
  • 2.2 Riemann-Liouville Fractional Integral
  • 2.3 Fractional Derivatives
  • 2.3.1 Riemann-Liouville fractional derivative
  • 2.3.2 Djrbashian-Caputo fractional derivative
  • 2.3.3 Grünwald-Letnikov fractional derivative
  • 3 Mittag-Leffler and Wright Functions
  • 3.1 Mittag-Leffler Function
  • 3.1.1 Basic analytic properties
  • 3.1.2 Mittag-Leffler function Eα,1(-x)
  • 3.2 Wright Function
  • 3.2.1 Basic analytic properties
  • 3.2.2 Wright function Wρ,µ(-x)
  • 3.3 Numerical Algorithms
  • 3.3.1 Mittag-Leffler function Eα,β(z)
  • 3.3.2 Wright function Wρ,µ(x)
  • Part II Fractional Ordinary Differential Equations
  • 4 Cauchy Problem for Fractional ODEs
  • 4.1 Gronwall's Inequalities
  • 4.2 ODEs with a Riemann-Liouville Fractional Derivative
  • 4.3 ODEs with a Djrbashian-Caputo Fractional Derivative
  • 5 Boundary Value Problem for Fractional ODEs
  • 5.1 Green's Function
  • 5.1.1 Riemann-Liouville case
  • 5.1.2 Djrbashian-Caputo case
  • 5.2 Variational Formulation
  • 5.2.1 One-sided fractional derivatives
  • 5.2.2 Two-sided mixed fractional derivatives
  • 5.3 Fractional Sturm-Liouville Problem
  • 5.3.1 Riemann-Liouville case
  • 5.3.2 Djrbashian-Caputo case
  • Part III Time-Fractional Diffusion
  • 6 Subdiffusion: Hilbert Space Theory
  • 6.1 Existence and Uniqueness in an Abstract Hilbert Space
  • 6.2 Linear Problems with Time-Independent Coefficients
  • 6.2.1 Solution representation
  • 6.2.2 Existence, uniqueness and regularity
  • 6.3 Linear Problems with Time-Dependent Coefficients
  • 6.4 Nonlinear Subdiffusion
  • 6.4.1 Lipschitz nonlinearity
  • 6.4.2 Allen-Cahn equation.
  • 6.4.3 Compressible Navier-Stokes problem
  • 6.5 Maximum Principles
  • 6.6 Inverse Problems
  • 6.6.1 Backward subdiffusion
  • 6.6.2 Inverse source problems
  • 6.6.3 Determining fractional order
  • 6.6.4 Inverse potential problem
  • 6.7 Numerical Methods
  • 6.7.1 Convolution quadrature
  • 6.7.2 Piecewise polynomial interpolation
  • 7 Subdiffusion: Hölder Space Theory
  • 7.1 Fundamental Solutions
  • 7.1.1 Fundamental solutions
  • 7.1.2 Fractional θ-functions
  • 7.2 Hölder Regularity in One Dimension
  • 7.2.1 Subdiffusion in mathbbR
  • 7.2.2 Subdiffusion in mathbbR+
  • 7.2.3 Subdiffusion on bounded intervals
  • 7.3 Hölder Regularity in Multi-Dimension
  • 7.3.1 Subdiffusion in mathbbRd
  • 7.3.2 Subdiffusion in mathbbRd+
  • 7.3.3 Subdiffusion on bounded domains
  • A Mathematical Preliminaries
  • A.1 AC Spaces and Hölder Spaces
  • A.1.1 AC spaces
  • A.1.2 Hölder spaces
  • A.2 Sobolev Spaces
  • A.2.1 Lebesgue spaces
  • A.2.2 Sobolev spaces
  • A.2.3 Fractional Sobolev spaces
  • A.2.4 s(Ω) spaces
  • A.2.5 Bochner spaces
  • A.3 Integral Transforms
  • A.3.1 Laplace transform
  • A.3.2 Fourier transform
  • A.4 Fixed Point Theorems
  • References
  • Index.
ISBN
3-030-76043-X
OCLC
1261380047
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information