Plastic scintillators : chemistry and applications / Matthieu Hamel, editor.

Format
Book
Language
English
Published/​Created
  • Cham, Switzerland : Springer, [2021]
  • ©2021
Description
1 online resource (647 pages)

Details

Subject(s)
Editor
Series
Topics in applied physics ; 140. [More in this series]
Source of description
Description based on print version record.
Contents
  • Intro
  • Foreword
  • References
  • Preface
  • Contents
  • Contributors
  • Part I Materials
  • 1 Introduction-Overview on Plastic and Inorganic Scintillators
  • 1.1 History of Scintillators
  • 1.2 Plastic Scintillator Chemists
  • 1.3 The Scintillation Process in Plastics and Inorganic Materials/Crystals
  • 1.4 Typical Preparation Process and Size Possibilities
  • 1.5 Main Parameters and Tools for Modification or Improvement
  • 1.5.1 Light Yield
  • 1.5.2 Decay Time
  • 1.5.3 Emission Wavelength
  • 1.5.4 Behavior Against External Environment
  • 1.5.5 Effective Atomic Number and Density
  • 1.6 Summary
  • 2 Neutron/Gamma Pulse Shape Discrimination in Plastics Scintillators: From Development to Commercialization
  • 2.1 Physical Basis for Neutron/Gamma Discrimination in Organic Scintillators
  • 2.2 Plastic Scintillators with Efficient Fast Neutron/Gamma Discrimination
  • 2.2.1 PPO-Based PSD Plastics
  • 2.2.2 PSD Plastics Utilizing Alternative Dyes and Dye Mixtures
  • 2.3 PSD Plastics for Combined Detection of Fast and Thermal Neutrons
  • 2.3.1 10B-loaded PSD Plastic Scintillators
  • 2.3.2 6Li-loaded PSD Plastic Scintillators
  • 2.4 Commercialization and Further Directions of Studies
  • 3 The Detection of Slow Neutrons
  • 3.1 Slow Neutrons: Essential Features
  • 3.1.1 The Definition of Slow Neutrons
  • 3.1.2 The Origins of Slow Neutrons
  • 3.2 Nuclear Reactions of Interest in Slow Neutron Detection
  • 3.2.1 Natural Abundance, Reaction Cross Section, Q-Value, and Typology of Reaction Products
  • 3.2.2 Main Nuclear Reactions of Interest
  • 3.2.3 Size of the Scintillator: Slow Neutron Mean Free Path and the Interaction of Reaction Products
  • 3.3 Detection of Reaction Products and n/γ Discrimination
  • 3.3.1 Background Radiation
  • 3.3.2 Pulse Height Discrimination
  • 3.3.3 Pulse Shape Discrimination
  • 3.3.4 Compensated Detectors.
  • 3.3.5 Multiplicity-Gated Detection
  • 3.3.6 Capture-Gated Detection
  • 3.4 Figures of Merit for Slow Neutron Detectors
  • 3.4.1 Figures of Merit About the Response to Neutrons
  • 3.4.2 Figures of Merit About the Response to Gamma Rays
  • 3.4.3 Figures of Merit About the Response to Neutron Against the Response to Gamma Rays
  • 3.5 Incorporation of Neutron Converters into Plastic Scintillator-Based Detectors
  • 3.5.1 Homogeneous Incorporation
  • 3.5.2 Heterogeneous Incorporation
  • 3.6 Applications of Plastic Scintillators to the Detection of Slow Neutrons
  • 3.6.1 Homeland Security
  • 3.6.2 Neutron Flux Monitoring and Source Characterization
  • 3.6.3 Reactor Antineutrino Experiments, Surveillance, and Monitoring
  • 4 Chemical Approach on Organometallic Loading in Plastic Scintillators and Its Applications
  • 4.1 Introduction/Context
  • 4.1.1 Plastic Scintillation
  • 4.1.2 Frame of This Chapter
  • 4.1.3 Properties Optimization
  • 4.1.4 Chemical Design and Material Science, What the Loading Implies
  • 4.1.5 Organization of This Chapter: Application Driven
  • 4.2 Scintillation Process Enhancement
  • 4.2.1 Triplet Harvesting
  • 4.2.2 Iridium Complexes
  • 4.2.3 Europium Complexes
  • 4.3 Photon Detection
  • 4.3.1 Theory
  • 4.3.2 X-ray Detection
  • 4.3.3 Gamma Detection
  • 4.4 Neutron Detection
  • 4.4.1 Thermal Neutron
  • 4.4.2 Lithium Loading
  • 4.4.3 Boron Loading
  • 4.4.4 Cadmium and Gadolinium Loading
  • 4.5 Conclusion
  • 4.6 Table by Elements
  • 5 Polysiloxane-Based Scintillators
  • 5.1 Foreword
  • 5.1.1 Silicon-Based Polymer Properties: Chemistry
  • 5.1.2 The Synthesis of Silicones
  • 5.2 Optical Properties of Phenyl-Containing Polysiloxanes
  • 5.3 Design of Polysiloxane-Based Scintillators
  • 5.3.1 Energy Transfer in Organic Polymers
  • 5.3.2 Polymeric Scintillators
  • 5.3.3 Polysiloxane-Based Scintillators.
  • 5.4 Polysiloxane Scintillators for Neutron Detection
  • 5.4.1 Neutron Detection in Organic Scintillators
  • 5.4.2 B and Li Loaded Polysiloxanes for Detection of Thermal Neutrons
  • 5.4.3 Design of Polysiloxane Scintillators for n/γ Discrimination
  • 5.5 Summary
  • 6 Composite Scintillators
  • 6.1 Introduction to Organic-Inorganic Composites
  • 6.1.1 Overview on Fabrication Methods of Nanocomposites
  • 6.1.2 Optical Properties Related to the Nanocomposite Structure
  • 6.2 Plastic Scintillators Incorporating Non-emitting Inorganic Nanoparticles
  • 6.2.1 Sol-gel-Derived Organic-Inorganic Composite Scintillators
  • 6.2.2 Nanocomposite Scintillators Fabricated via Two-Step Synthesis
  • 6.3 Nanocomposite Scintillators Comprising Luminescent Nanoparticles
  • 6.3.1 Nanocomposite Scintillators Comprising Inorganic Phosphor Nanoparticles
  • 6.3.2 Nanocomposite Scintillators Comprising Semiconductor Nanocrystals
  • 6.4 Summary and Future Prospects
  • 7 Molecular Design Considerations for Different Classes of Organic Scintillators
  • 7.1 Design Considerations for Crystalline, Plastic, and Liquid Scintillators
  • 7.1.1 Background on Scintillation Mechanisms
  • 7.1.2 Process (1): Direct Excitation into π-Electronic States
  • 7.1.3 Process (2): Overview of Direct Ionization and Recombination of π-states
  • 7.1.4 Physical and Mechanical Properties of Different Classes of Organic Scintillators
  • 7.2 Future Opportunities
  • 8 Organic Glass Scintillators
  • 8.1 Introduction to Organic Glass Scintillators
  • 8.2 Glassy State of Matter
  • 8.3 Differentiating Characteristics of Organic Molecular Glasses
  • 8.4 Design Strategies for Stable Organic Molecular Glasses
  • 8.4.1 Nonplanar Structures
  • 8.4.2 Increasing Molecular Size
  • 8.4.3 Multiple Conformations
  • 8.4.4 Physical Mixtures.
  • 8.5 Fluorescent Molecular Glasses as Organic Glass Scintillators (OGSs)
  • 8.6 Organic Glass Scintillators: Case Studies
  • 8.7 Organic Glass Thermal and Mechanical Properties
  • 8.7.1 Mechanical Strength: Intermolecular Interactions
  • 8.7.2 Mechanical Strength: Organic Glass/Polymer Blending
  • 8.8 Properties of OGS/Polymer Blends
  • 8.8.1 Effect of Small-Molecule Additives on Tg
  • 8.8.2 Scintillation Properties of OGS/Polymer Blends
  • 8.9 Organic Glass Scintillator Fabrication Methods
  • 8.10 Long-Term Stability and Environmental Aging of Organic Glass Scintillators
  • 8.10.1 Surface Versus Bulk Diffusion
  • 8.10.2 Accelerated Aging of Organic Glasses and Mitigation Methods
  • 8.11 Compatibility of OGS with Multi-functional Additives
  • 8.11.1 Boron-Loaded OGS for Fast Neutron/Gamma PSD and Thermal Neutron Capture
  • 8.11.2 Metal-Loaded OGS for Fast Neutron/Gamma PSD and Gamma-Ray Spectroscopy
  • 8.12 Summary and Future Outlook
  • Part II Applications
  • 9 Optical Improvements of Plastic Scintillators by Nanophotonics
  • 9.1 Introduction
  • 9.2 Enhancement of Light Extraction Efficiency of Plastic Scintillators by Photonic Crystals
  • 9.2.1 Introduction of Photonic Crystals
  • 9.2.2 Enhancement Mechanism of Light Extraction Efficiency by Photonic Crystals
  • 9.2.3 Control of Directional Emission by Photonic Crystals
  • 9.2.4 Consideration for the Structural Design of Photonic Crystals
  • 9.3 Control of Directional Emission of Plastic Scintillators by Plasmonic Lattice Resonances
  • 9.4 Patterning Techniques for Plastic Scintillators
  • 9.4.1 Self-assembly Lithography
  • 9.4.2 Nanoimprint Lithography (NIL)
  • 9.4.3 X-Ray Interference Lithography (XIL)
  • 9.5 Improved Scintillation Performance of Detectors by Photonic Crystals
  • 9.6 Summary and Remark
  • References.
  • 10 Analog and Digital Signal Processing for Nuclear Instrumentation
  • 10.1 Introduction
  • 10.2 The Light to Electric Signal Conversion
  • 10.2.1 Design of PMTs
  • 10.2.2 Solid-State Semiconductor Photodetectors
  • 10.3 The Signal Acquisition Frontend
  • 10.3.1 Charge to Voltage Conversion
  • 10.3.2 Gain and Pulse Shaping Stage
  • 10.3.3 Voltage Limiters
  • 10.3.4 Impedance Matching and Other Effects
  • 10.4 The Digitization Stage
  • 10.4.1 Signal Digitization Basics
  • 10.4.2 Digitizer Architectures
  • 10.5 Signal Processing and Feature Extraction
  • 10.5.1 Low-Level Digital Stream Processing
  • 10.5.2 Digital Pulse Processing
  • 10.6 Data and Information Processing
  • 10.6.1 Count Rate Analysis
  • 10.6.2 Discrimination of the Nature of the Interactions
  • 10.6.3 Spectral Unmixing and Radionuclide Identification
  • 10.7 Conclusion
  • 11 Radioactive Noble Gas Detection and Measurement with Plastic Scintillators
  • 11.1 Radioactive Noble Gas Isotopes
  • 11.1.1 Kr-85
  • 11.1.2 Xe-131m
  • 11.1.3 Xe-133
  • 11.1.4 Xe-133m
  • 11.1.5 Xe-135
  • 11.1.6 Ar-37
  • 11.1.7 Rn-222 and Progenies
  • 11.1.8 Rn-220 and Progenies
  • 11.2 Application of Plastic Scintillators to the Detection of Noble Gas
  • 11.2.1 Xenon Detection Systems for the CTBT Network
  • 11.2.2 Kr-85 Monitors Using Plastic Scintillators
  • 11.2.3 Radon and Thoron Detection and Measurement with Plastic Scintillators
  • 11.3 RNG-Related Properties of Plastic Scintillators
  • 11.3.1 Noble Gas Absorption in Plastic Materials
  • 11.3.2 Application of Pulse Shape Discrimination to 222Rn Measurements
  • 11.3.3 Description of the Alpha-Particle Peak Shapes in 222Rn Measurements with Plastic Scintillators
  • 11.4 Concluding Remarks
  • 12 Recent Advances and Clinical Applications of Plastic Scintillators in the Field of Radiation Therapy
  • 12.1 Introduction.
  • 12.2 Basic Dosimetry Properties of Plastic Scintillators.
ISBN
3-030-73488-9
OCLC
1260344440
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information