Chirality, magnetism and magnetoelectricity : separate phenomena and joint effects in metamaterial structures / Eugene Kamenetskii, editor.

Format
Book
Language
English
Published/​Created
  • Cham, Switzerland : Springer, [2021]
  • ©2021
Description
1 online resource (587 pages).

Details

Subject(s)
Editor
Series
Source of description
Description based on print version record.
Contents
  • Intro
  • Preface
  • Contents
  • Contributors
  • 1 Chiral Coupling to Magnetodipolar Radiation
  • 1.1 Introduction
  • 1.2 Chiral Excitation of Spin Waves by Metallic Stripline
  • 1.2.1 Oersted Magnetic Fields
  • 1.2.2 Chiral Excitation of Spin Waves
  • 1.3 Chiral Spin Wave Excitation and Absorption by a Magnetic Transducer
  • 1.3.1 Chiral Magnetodipolar Field
  • 1.3.2 Non-local Detection
  • 1.3.3 Coherent Chiral Spin Wave Transmission
  • 1.3.4 Incoherent Chiral Pumping
  • 1.4 Conclusion and Outlook
  • References
  • 2 Surface Plasmons for Chiral Sensing
  • 2.1 Introduction
  • 2.1.1 Chirality and Optical Activity
  • 2.1.2 Chiral Sensing Techniques
  • 2.2 Surface Plasmon Resonance (SPR)
  • 2.2.1 SPPs at a Metal-Dielectric Interface
  • 2.2.2 SPPs at a Metal-Chiral Interface
  • 2.3 CHISPR
  • 2.3.1 Mechanism of Chiral-Dependent SPR-Reflectance Angular Split
  • 2.3.2 Sensitivity of Chiral-Dependent SPR-reflectance Angular Split
  • 2.3.3 Differential Measurements
  • 2.4 Complete Measurement of Chirality
  • 2.5 Optical Chirality Conservation
  • 2.6 Discussion and Conclusions
  • 3 Spin-Polarized Plasmonics: Fresh View on Magnetic Nanoparticles
  • 3.1 Introduction
  • 3.2 Spin Polarization in Co Nanoparticles
  • 3.3 Methods
  • 3.4 Structural Properties
  • 3.5 Magnetic Response
  • 3.6 Optical Resonance in Spin-Polarized Co Nanoparticles
  • 3.7 Effect of Dimers
  • 3.8 Conclusions
  • 4 Chirality and Antiferromagnetism in Optical Metasurfaces
  • 4.1 Introduction
  • 4.1.1 Optical Elements
  • 4.1.2 History of Optical Metasurfaces
  • 4.2 Chirality of Light
  • 4.2.1 Spin of a Photon and Spin Angular Momentum
  • 4.2.2 Optical Vortices and Orbital Angular Momentum
  • 4.3 Optical Chiral Metasurfaces
  • 4.3.1 Plasmonic Chiral Metasurfaces
  • 4.3.2 Chiral Nanosieves
  • 4.3.3 Dielectric Chiral Metasurfaces and Anti-ferromagnetic Resonances.
  • 4.4 Applications of Chiral Light and Metasurfaces
  • 4.4.1 Circular Dichroism and Helical Dichroism
  • 4.4.2 Chiral Meta-Optics
  • 4.5 Conclusions
  • 5 Light-Nanomatter Chiral Interaction in Optical-Force Effects
  • 5.1 Introduction
  • 5.2 3D Near-Field CD by Optical-Force Measurement
  • 5.2.1 Model and Method
  • 5.2.2 CD Spectra and NF-CD Maps
  • 5.2.3 CD of Optical Force
  • 5.3 Optical Force to Rotate Nano-Particles in Nanoscale Area
  • 5.3.1 Model and Method
  • 5.3.2 Optical Force to Rotate the NP
  • 5.3.3 Optical Current
  • 5.4 Summary
  • 6 Magnetoelectricity of Chiral Micromagnetic Structures
  • 6.1 Introduction. Chiral Structures of an Order Parameter
  • 6.2 Microscopic Mechanisms of Spin Flexoelectricity
  • 6.3 Chirality Dependent Domain Wall Motion
  • 6.4 Chirality Dependent Bubble Domain Generation
  • 6.5 Spin Flexoelectricity of Bloch Lines, Vortexes and Skyrmions
  • 6.6 Conclusion
  • Appendix: Experimental and Calculation Details
  • 7 Current-Induced Dynamics of Chiral Magnetic Structures: Creation, Motion, and Applications
  • 7.1 Introduction
  • 7.2 Continuum Model for the Magnetization
  • 7.2.1 Magnetization Statics
  • 7.2.2 Magnetization Dynamics in the Presence of Spin-Torques
  • 7.3 Magnetic Solitons
  • 7.4 Creation of Magnetic Solitons
  • 7.4.1 Creation of One-Dimensional Solitons
  • 7.4.2 Creation of Two-Dimensional Solitons
  • 7.5 Motion of Magnetic Solitons
  • 7.5.1 A Collective Coordinate Approximation: Thiele Equations of Motion
  • 7.5.2 Magnetization Dynamics of Domain Walls in Nanowires
  • 7.5.3 Magnetization Dynamics of Two-Dimensional Solitons
  • 7.5.4 Magnetization Dynamics of Three-Dimensional Hopfions
  • 7.6 Potential Applications
  • 7.6.1 Storage and Logic Technologies
  • 7.6.2 Unconventional Spintronics-Based Computing Schemes
  • 7.7 Conclusion
  • References.
  • 8 Microwave-Driven Dynamics of Magnetic Skyrmions Under a Tilted Magnetic Field: Magnetic Resonances, Translational Motions, and Spin-Motive Forces
  • 8.1 Introduction
  • 8.2 Spin Model of the Skyrmion-Hosting Magnets
  • 8.3 Microwave-Active Spin-Wave Modes
  • 8.4 Microwave-Magnetic-Field-Driven Translational Motion of Skyrmion Crystal
  • 8.5 Microwave-Electric-Field-Driven Translational Motion of Isolated Skyrmions
  • 8.6 Electrically Driven Spin Torque and Dynamical Dzyaloshinskii-Moriya Interaction
  • 8.7 Microwave-Induced DC Spin-Motive Force
  • 8.8 Concluding Remarks
  • 9 Symmetry Approach to Chiral Optomagnonics in Antiferromagnetic Insulators
  • 9.1 Introduction
  • 9.2 Optical Chirality and Nongeometric Symmetries of the Maxwell's Equations
  • 9.2.1 Symmetry Analysis of the Maxwell's Equations
  • 9.2.2 Optical Chirality in Gyrotropic Media
  • 9.3 Spin-Wave Chirality in Antiferromagnetic Insulators
  • 9.3.1 Equations of Motion for Antiferromagnetic Spin Waves
  • 9.3.2 Nongeometric Symmetries for Spin-Wave Dynamics
  • 9.3.3 Conserving Chirality of Spin Waves
  • 9.3.4 Spin-Wave Chirality in Dissipative Media
  • 9.4 Excitation of Magnon Spin Photocurrents with Polarized Fields
  • 9.4.1 Magnon Spin Currents in Antiferromagnets
  • 9.4.2 Photo-Excitation of Magnon Spin Currents
  • 9.4.3 Microscopic Theory of Magnon Spin Photocurrents
  • 9.4.4 Magnon Spin Photocurrents in Antiferromagnetic Insulators and Low Dimensional Materials
  • 9.5 Conclusions
  • 10 Realization of Artificial Chirality in Micro-/Nano-Scale Three-Dimensional Plasmonic Structures
  • 10.1 Introduction
  • 10.2 Chirality at the Micrometer-Scale or Higher: Top-Down Approach
  • 10.2.1 Direct Laser Writing
  • 10.2.2 Buckling Process Using Focused Ion Beam
  • 10.3 Chirality at the Nanometer to Micrometer Scale
  • 10.3.1 Electron Beam Lithography Overlay.
  • 10.3.2 Glancing Angle Deposition
  • 10.3.3 Unconventional Approaches
  • 10.4 Chirality at a Nanometer Scale: Bottom-Up Approach
  • 10.4.1 Molecular Self-assembly
  • 10.4.2 DNA Self-assembly
  • 10.4.3 Block Copolymer Self-assembly
  • 10.5 Conclusion
  • 11 Floquet Theory and Ultrafast Control of Magnetism
  • 11.1 Introduction
  • 11.2 Floquet Engineering
  • 11.2.1 Floquet Theorem
  • 11.2.2 Discretized Fourier Transformation and Matrix Form of Schrødinger Equation
  • 11.2.3 Floquet-Magnus Expansion and Floquet Hamiltonian
  • 11.2.4 Physical Meaning of Floquet Hamiltonian
  • 11.3 Laser and Typical Excitations in Solids
  • 11.4 Floquet Engineering in Magnets
  • 11.4.1 Inverse Faraday Effect by THz Laser
  • 11.4.2 Ultrafast Control of Spin Chirality and Spin Current in Multiferroic Magnets
  • 11.5 Summary and Outlook
  • 12 Magnetoelastic Waves in Thin Films
  • 12.1 Introduction
  • 12.2 Spin Waves
  • 12.2.1 Magnetic Interactions and Magnetization Dynamics
  • 12.2.2 Spin Waves in the Bulk Ferromagnets
  • 12.2.3 Spin Waves in Ferromagnetic Thin Films
  • 12.3 Elastic Waves
  • 12.3.1 Elastodynamic Equations of Motion
  • 12.3.2 Elastic Waves in Thin Films
  • 12.4 Magnetoelastic Waves
  • 12.4.1 Magnetoelastic Interactions
  • 12.4.2 Magnetoelastic Waves in Thin Films
  • 12.4.3 Damping of Magnetoelastic Waves
  • 12.5 Conclusion
  • 13 Theoretical Generalization of the Optical Chirality to Arbitrary Optical Media
  • 13.1 Introduction
  • 13.2 Electromagnetic Energy Density in Dispersive and Lossy Media: A General Approach from the Continuity Equation
  • 13.2.1 Poynting's Theorem and Energy Density in Non-Dispersive Media
  • 13.2.2 Electromagnetic Energy Density in Dispersive Media: Lossless (Brillouin's Approach) and Lossy (Loudon's Approach) Cases
  • 13.3 Generalizing the Conservation Law for the Optical Chirality.
  • 13.4 Optical Chirality Density in Linear Dispersive Media
  • 13.4.1 Optical Chirality Density in Dispersive and Lossless Media: Brillouin's Approach
  • 13.4.2 Optical Chirality Density in Dispersive and Lossy Media: Loudon's Approach
  • 13.4.3 Brillouin's Approach Vs Loudon's Approach
  • 13.5 Conclusions and Outlook
  • 14 Topology in Magnetism
  • 14.1 Introduction
  • 14.2 Topological Spin Textures
  • 14.2.1 Domain Walls
  • 14.2.2 Vortices and Skyrmions
  • 14.2.3 Hopfions
  • 14.3 Topological Spin Waves
  • 14.3.1 Topologically Protected Edge Spin Waves
  • 14.3.2 3D Topological Spin Waves
  • 14.4 Conclusion
  • 15 Topological Dynamics of Spin Texture Based Metamaterials
  • 15.1 Introduction
  • 15.2 Topological Structures, Properties, and Applications of Magnetic Solitons
  • 15.3 The Topological Properties of Skyrmion Lattice
  • 15.3.1 Large-Scale Micromagnetic Simulations
  • 15.3.2 Theoretical Model
  • 15.4 Corner States in a Breathing Kagome Lattice of Vortices
  • 15.4.1 The Theoretical Results and Discussions
  • 15.4.2 Micromagnetic Simulations
  • 15.5 Corner States in a Breathing Honeycomb Lattice of Vortices
  • 15.5.1 Theoretical Model
  • 15.5.2 Corner States and Phase Diagram
  • 15.5.3 Micromagnetic Simulations
  • 15.6 Conclusion and Outlook
  • 16 Antiferromagnetic Skyrmions and Bimerons
  • 16.1 Introduction
  • 16.2 Current-Driven Creation, Motion, and Chaos of Antiferromagnetic Skyrmions and Bimerons
  • 16.3 Spin Torque Nano-oscillators Based on Antiferromagnetic Skyrmions
  • 16.4 Synthetic Antiferromagnetic Skyrmions Driven by the Spin Current
  • 16.5 Antiferromagnetic Skyrmions Driven by the Magnetic Anisotropy Gradient
  • 16.6 Pinning and Depinning of Antiferromagnetic Skyrmions
  • 16.7 Summary
  • 17 Axion Electrodynamics in Magnetoelectric Media
  • 17.1 Introduction.
  • 17.2 Nondynamical Axion Electrodynamics.
ISBN
3-030-62844-2
OCLC
1244535064
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information