Nuclear physics with stable and radioactive ion beams / edited by F. Gramegna, P. Van Duppen and Andrea Vitturi ; and S. Pirrone.

Author
Gramegna, F. [Browse]
Format
Book
Language
English
Εdition
1st ed.
Published/​Created
  • Amsterdam : IOS Press, [2019]
  • ©2019
Description
1 online resource (472 pages).

Details

Subject(s)
Editor
Contributor
Series
  • International School of Physics "Enrico Fermi." Proceedings of the International School of Physics "Enrico Fermi" ; Course 201. [More in this series]
  • Proceedings of the International School of Physics Enrico Fermi ; Course 201
Source of description
Description based on print version record.
Contents
  • Intro
  • Title Page
  • Contents
  • Preface
  • Course group shot
  • Recent developments in shell model studies of atomic nuclei
  • 1. Introduction
  • 2. Basic points of the shell model
  • 3. Computational aspect-Monte Carlo Shell Model
  • 4. Hamiltonians
  • 5. Emerging concepts on many-body dynamics
  • 6. Shell evolution and monopole interaction
  • 6.1. Monopole interaction
  • 6.2. Effect of monopole interaction
  • 7. Shell evolution due to nuclear forces
  • 7.1. Type-I shell evolution
  • 7.2. Shell evolution due to tensor force
  • 8. Nuclear shape
  • 8.1. Nuclear shapes and quantum phase transition
  • 8.2. Quantum phase transition in Zr isotopes
  • 8.3. Quantum self-organization
  • 9. Summary and perspectives
  • Algebraic models of quantum many-body systems: The algebraic cluster model
  • 2. Cluster structure of light nuclei
  • 3. The algebraic cluster model
  • 3.1. Classification of states
  • 3.1.1. Dumbbell configuration, k = 2. Z2 symmetry
  • 3.1.2. Equilateral-triangle configuration, k = 3. D3h symmetry
  • 3.1.3. Tetrahedral configuration, k = 4. Td symmetry
  • 3.2. Energy formulas
  • 3.2.1. Dumbbell configuration. Z2 symmetry
  • 3.2.2. Equilateral-triangle configuration. D3h symmetry
  • 3.2.3. Tetrahedral configuration. Td symmetry
  • 3.3. Form factors and transition probabilities
  • 3.3.1. Dumbbell configuration. Z2 symmetry
  • 3.3.2. Equilateral-triangle configuration. D3h symmetry
  • 3.3.3. Tetrahedral configuration. Td symmetry
  • 3.4. Cluster densities
  • 3.4.1. Dumbbell configuration. Z2 symmetry
  • 3.4.2. Equilateral-triangle configuration. D3h symmetry
  • 3.4.3. Tetrahedral configuration. Td symmetry
  • 3.5. Moments of inertia and radii
  • 3.5.1. Dumbbell configuration. Z2 symmetry
  • 3.5.2. Equilateral-triangle configuration, k = 3. D3h symmetry
  • 3.5.3. Tetrahedral configuration, k = 4. Td symmetry.
  • 4. Evidence for cluster structures
  • 4.1. Energies
  • 4.1.1. Dumbbell configuration. Z2 symmetry
  • 4.1.2. Equilateral-triangle configuration. D3h symmetry
  • 4.1.3. Tetrahedral configuration. Td symmetry
  • 4.2. Electromagnetic transition rates
  • 4.2.1. Dumbbell configuration. Z2 symmetry
  • 4.2.2. Equilateral-triangle configuration. D3h symmetry
  • 4.2.3. Tetrahedral configuration. Td symmetry
  • 4.3. Form factors
  • 4.3.1. Dumbbell configuration. Z2 symmetry
  • 4.3.2. Equilateral-triangle configuration. D3h symmetry
  • 4.3.3. Tetrahedral configuration. Td symmetry
  • 5. Breaking of the cluster structure. Non-cluster states
  • 6. Softness and higher-order corrections
  • 6.1. Dumbbell configuration. Z symmetry
  • 6.2. Equilateral-triangle configuration. D3h symmetry
  • 6.3. Tetrahedral configuration. Td symmetry
  • 7. Other geometric configurations
  • 8. Conclusions
  • Clustering in light neutron-rich nuclei
  • 2. Antisymmetrized molecular dynamics
  • 2.1. AMD wave function
  • 2.2. Cluster correlation
  • 3. Clustering in neutron-rich Be
  • 4. Clustering in 12C and neighboring nuclei
  • 4.1. Cluster structures of 12C
  • 4.2. Cluster gas states 12C and 11B and their rotation
  • 4.3. Linear chain structure of 14C
  • 5. Monopole and dipole excitations in light nuclei
  • 5.1. Low-energy monopole and dipole excitations
  • 5.2. Dipole transition operators
  • 5.3. Monopole transitions in 12C
  • 5.4. Dipole excitations in Be
  • 6. Conclusion
  • Density Functional Theory (DFT) for atomic nuclei: A simple introduction
  • 2. Basics on DFT for electronic systems
  • 3. The nuclear case: the mean-field picture and Hartree-Fock theory
  • 4. Uniform nuclear matter
  • 5. Failure of mean field with simple forces and the need for DFT
  • 6. Examples of nuclear EDFs
  • 7. Examples of calculations of ground-state properties.
  • 8. Intrinsic density
  • 9. Symmetry breaking and restoration
  • 10. Extension to the time-dependent case
  • 11. Examples of RPA calculations
  • 12. Limitations of EDFs
  • 13. Conclusions
  • Models for nuclear reactions with weakly bound systems
  • 2. Some general scattering theory
  • 2.1. The concept of cross section
  • 2.2. Model Hamiltonian and scattering wave function
  • 2.3. An integral equation for fbeta,alpha(theta)
  • 2.4. Gell-Mann-Goldberger transformation (aka two-potential formula)
  • 3. Defining the modelspace
  • 4. Single-channel scattering: the optical model
  • 4.1. Partial wave expansion
  • 4.2. Scattering amplitude
  • 4.3. Coulomb case
  • 4.4. Coulomb plus nuclear case
  • 4.5. Parametrization of the phenomenological optical potential
  • 4.6. Microscopic optical potentials
  • 5. Elastic scattering phenomenology
  • 5.1. Elastic scattering in the presence of strong absorption
  • 5.2. Elastic scattering of weakly bound nuclei
  • 5.3. Coulomb dipole polarization potentials
  • 6. Inelastic scattering: the coupled-channels method
  • 6.1. Formal treatment of inelastic reactions
  • 6.1.1. The coupled-channels (CC) method
  • 6.1.2. Boundary conditions
  • 6.1.3. The DWBA method for inelastic scattering
  • 6.2. Specific models for inelastic scattering
  • 6.2.1. Macroscopic (collective) models
  • 6.2.2. Few-body model
  • 7. Breakup reactions I: quantum-mechanical approach
  • 7.1. The CDCC method
  • 7.1.1. Inclusion of core and target excitations
  • 7.1.2. Extension to three-body projectiles
  • 7.1.3. Connection with the Faddeev formalism
  • 7.1.4. Microscopic CDCC
  • 7.2. Exploring the continuum with breakup reactions
  • 7.2.1. Coulomb breakup
  • 7.2.2. Resonant nuclear breakup
  • 7.3. The problem of inclusive breakup
  • 7.3.1. The IAV model for inclusive breakup
  • 7.3.2. Eikonal approximation to inclusive breakup.
  • 7.4. Quasi-free (p,pN) reactions
  • 8. Breakup reactions II: semiclassical methods
  • 8.1. The semiclassical formalism of Alder and Winther
  • 8.2. Dynamic Coulomb polarization potential from the AW theory
  • 9. Transfer reactions
  • 9.1. An exact expression for the transfer amplitude
  • 9.2. The DWBA approximation
  • 9.3. Influence of breakup channels on transfer: the ADWA method
  • 9.4. Continuum Discretized Coupled Channels Born Approximation CDCC-BA
  • 9.5. Transfer reactions populating unbound states
  • 10. Final remarks
  • Nucleon-transfer reactions with radioactive ion beams
  • 2. Characteristics of nuclear reactions
  • 2.1. Classification
  • 2.2. Importance of transfer reactions
  • 2.3. Conservation of energy
  • 2.4. Conservation of angular momentum
  • 2.5. Spectroscopic factors
  • 3. Transfer reactions with nuclei far from stability
  • 3.1. Inverse kinematics
  • 3.2. Detection setup
  • 4. Case studies
  • 4.1. Light nuclei
  • 4.2. The emergence of N = 16
  • 4.3. The spin-orbit term
  • 4.4. The structure of 0+ states
  • 5. Present and future developments
  • Appendix. Two-body kinematics
  • beta decay studies of the most exotic nuclei
  • 2. Properties of beta-decay
  • 3. Measuring beta-decays properties, half-lives and logft
  • 4. beta-decay and astrophysics
  • 5. beta-decay in exotic neutron-rich nuclei
  • 6. Conclusions and outlook
  • New developments in laser spectroscopy for RIBs
  • 2. Nuclear signatures in the optical spectrum
  • 2.1. Finite nuclear size and the isotope shift
  • 2.2. Nuclear moments and the hyperfine splitting
  • 2.2.1. Magnetic hyperfine structure
  • 2.2.2. Electric hyperfine structure
  • 3. Techniques of on-line laser spectroscopy
  • 3.1. Collinear laser spectroscopy
  • 3.2. Resonance ionization spectroscopy (RIS)
  • 4. Examples.
  • 4.1. Beryllium - Halos and vanishing shell closures
  • 4.2. Magnesium - The island of inversion
  • 4.3. Calcium - Mystery beyond the N = 28 shell closure
  • 4.4. Cadmium - Simple structure in complex nuclei
  • 4.5. CRIS - Collinear resonance ionization spectroscopy
  • 4.6. In-source resonance ionization spectroscopy: Studies in the Pb region
  • 4.7. Gas-cell resonance ionization spectroscopy: Studying superheavy elements
  • 5. Summary
  • The electric dipole excitation in nuclei: From zero to finite temperature
  • 2. Pygmy states populated with inelastic scattering of isoscalar probes
  • 3. Isospin mixing at finite temperature in the proton-rich 80Zr
  • 4. Concluding remarks
  • The f7/2 shell: An optimum test bench for nuclear-structure studies
  • 2. Isospin-symmetry studies in the f7/2 shell
  • 3. Extension to the sd-shell nuclei
  • 4. A new approach: MED and neutron skin
  • Structure function and collective effects in particle evaporation
  • 2. Particle evaporation from compound nuclei
  • 3. Shape polarization and evaporation spectra
  • 4. Experimental particle structure functions
  • 5. Significance of the shape polarization parameters
  • 6. Possible interpretations of the observed modulations
  • 7. Moment expansion of the evaporation spectra
  • 8. Conclusion
  • Fission dynamics in systems of intermediate fissility
  • 2. Dynamical vs. statistical approach
  • 3. Dissipation in systems of intermediate fissility
  • 4. The 8piLP apparatus
  • 5. A case study: the system 32S + 100Mo at 200MeV
  • 5.1. Experimental procedure and data analysis
  • 5.2. Statistical model analysis
  • 5.3. Dynamical model analysis
  • 5.4. Angular correlation ER-LCP
  • 5.5. Mass-energy distribution of fission fragments
  • 5.6. Total kinetic-energy distribution of fission fragments.
  • 5.7. Mass distribution of fission fragments.
ISBN
1-61499-957-0
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view