Simple and Bias-Corrected Matching Estimators for Average Treatment Effects / Alberto Abadie, Guido W. Imbens.

Author
Abadie, Alberto [Browse]
Format
Book
Language
English
Published/​Created
Cambridge, Mass. National Bureau of Economic Research 2002.
Description
1 online resource: illustrations (black and white);

Details

Series
  • Technical Working Paper Series (National Bureau of Economic Research) no. t0283. [More in this series]
  • NBER technical working paper series no. t0283
Summary note
Matching estimators for average treatment effects are widely used in evaluation research despite the fact that their large sample properties have not been established in many cases. In this article, we develop a new framework to analyze the properties of matching estimators and establish a number of new results. First, we show that matching estimators include a conditional bias term which may not vanish at a rate faster than root-N when more than one continuous variable is used for matching. As a result, matching estimators may not be root-N-consistent. Second, we show that even after removing the conditional bias, matching estimators with a fixed number of matches do not reach the semiparametric efficiency bound for average treatment effects, although the efficiency loss may be small. Third, we propose a bias-correction that removes the conditional bias asymptotically, making matching estimators root-N-consistent. Fourth, we provide a new estimator for the conditional variance that does not require consistent nonparametric estimation of unknown functions. We apply the bias-corrected matching estimators to the study of the effects of a labor market program previously analyzed by Lalonde (1986). We also carry out a small simulation study based on Lalonde's example where a simple implementation of the biascorrected matching estimator performs well compared to both simple matching estimators and to regression estimators in terms of bias and root-mean-squared-error. Software for implementing the proposed estimators in STATA and Matlab is available from the authors on the web.
Notes
October 2002.
Source of description
Print version record
Statement on responsible collection description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view

Supplementary Information