Periods and Nori Motives [electronic resource] / by Annette Huber, Stefan Müller-Stach.

Author
Huber, Annette [Browse]
Format
Book
Language
English
Εdition
1st ed. 2017.
Published/​Created
Cham : Springer International Publishing : Imprint: Springer, 2017.
Description
1 online resource (XXIII, 372 p. 7 illus.)

Details

Subject(s)
Author
Series
  • Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, 65 [More in this series]
  • Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of Modern Surveys in Mathematics, 0071-1136 ; 65
Summary note
This book casts the theory of periods of algebraic varieties in the natural setting of Madhav Nori’s abelian category of mixed motives. It develops Nori’s approach to mixed motives from scratch, thereby filling an important gap in the literature, and then explains the connection of mixed motives to periods, including a detailed account of the theory of period numbers in the sense of Kontsevich-Zagier and their structural properties. Period numbers are central to number theory and algebraic geometry, and also play an important role in other fields such as mathematical physics. There are long-standing conjectures about their transcendence properties, best understood in the language of cohomology of algebraic varieties or, more generally, motives. Readers of this book will discover that Nori’s unconditional construction of an abelian category of motives (over fields embeddable into the complex numbers) is particularly well suited for this purpose. Notably, Kontsevich's formal period algebra represents a torsor under the motivic Galois group in Nori's sense, and the period conjecture of Kontsevich and Zagier can be recast in this setting. Periods and Nori Motives is highly informative and will appeal to graduate students interested in algebraic geometry and number theory as well as researchers working in related fields. Containing relevant background material on topics such as singular cohomology, algebraic de Rham cohomology, diagram categories and rigid tensor categories, as well as many interesting examples, the overall presentation of this book is self-contained.
Bibliographic references
Includes bibliographical references and index.
Contents
Part I Background Material -- General Set-Up -- Singular Cohomology -- Algebraic de Rham Cohomology -- Holomorphic de Rham Cohomology -- The Period Isomorphism -- Categories of (Mixed) Motives -- Part II Nori Motives -- Nori's Diagram Category -- More on Diagrams -- Nori Motives -- Weights and Pure Nori Motives -- Part III Periods -- Periods of Varieties -- Kontsevich–Zagier Periods -- Formal Periods and the Period Conjecture -- Part IV Examples -- Elementary Examples -- Multiple Zeta Values -- Miscellaneous Periods: an Outlook.
ISBN
9783319509266
Doi
  • 10.1007/978-3-319-50926-6
Statement on Language in Description
Princeton University Library aims to describe Library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view