Personalizing the infinite jukebox : ML and the TensorFlow ecosystem at Spotify / Josh Baer.

Author
Baer, Josh [Browse]
Format
Video/Projected medium
Language
English
Εdition
1st edition.
Published/​Created
O'Reilly Media, Incorporated, 2020.
Description
1 online resource.

Details

Subject(s)
Author
Library of Congress genre(s)
Series
Safari Books Online (Series) [More in this series]
Summary note
When Spotify launched in 2008, the lucky first launch countries rejoiced at the prospect of an almost infinite jukebox at their fingertips. In the 10+ years that followed, the product evolved quite a bit from something that required you to know exactly what you wanted to listen to before you listened to the product today that offers countless recommendations and a personalized experience. It's no surprise that ML has had a prominent role in that evolution. Josh Baer and Keshi Dai explain how Spotify applied ML to personalize its product and discuss the historical challenges of bringing ML products to market. You'll learn how Spotify uses TensorFlow and, especially, the TFX family of products as a "paved" workflow and how this has improved the ability for product teams to leverage ML in their work. You'll also examine the current state of the ML platform at Spotify and the open challenges the company faces. Prerequisite knowledge A basic understanding of the ML workflow and the challenges that engineers face in productionizing ML in the industry What you'll learn Understand the usage of Tensorflow Extended (tf.Transform, TF Data Validation, TF Model Analysis, tf.Examples, et cetera) in the enterprise and how ML works at Spotify.
Issuing body
Made available through: Safari, an O'Reilly Media Company.
Source of description
Online resource; Title from title screen (viewed February 28, 2020)
Participant(s)/​Performer(s)
Presenter, Josh Baer, Keshi Dai.
OCLC
1143018716
Other standard number
  • 0636920373667
Statement on language in description
Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
Other views
Staff view