Nanocarbons for electroanalysis / edited by Sabine Szunerits, Rabah Boukherroub, Alison Downard, Jun-Jie Zhu.

Format
Book
Language
English
Published/​Created
  • Hoboken, NJ : John Wiley & Sons, Inc., 2017.
  • ©2017
Description
xvi, 262 pages, 18 unnumbered pages of plates ; 25 cm.

Availability

Copies in the Library

Location Call Number Status Location Service Notes
Engineering Library - Stacks QD572.C37 N36 2017 Browse related items Request

    Details

    Subject(s)
    Editor
    Series
    Nanocarbon chemistry and interfaces [More in this series]
    Summary note
    A valuable reference for the emerging age of carbon-based electronics and electrochemistry, this book discusses diverse applications for nanocarbon materials in electrochemical sensing. It highlights the advantages and disadvantages of the different nanocarbon materials currently used for electroanalysis, covering the electrochemical sensing of small-sized molecules, such as metal ions and endocrine disrupting chemicals (EDCs), as well as large biomolecules such as DNA, RNA, enzymes and proteins. A comprehensive look at state-of-the-art applications for nanocarbon materials in electrochemical sensors Emphasizes the relationship between the carbon structures and surface chemistry, and electrochemical performance Covers a wide array of carbon nanomaterials, including nanocarbon films, carbon nanofibers, graphene, diamond nanostructures, and carbon-dots Edited by internationally renowned experts in the field with contributions from researchers at the cutting edge of nanocarbon electroanalysis Nanocarbons for Electroanalysis is a valuable working resource for all chemists and materials scientists working on carbon based-nanomaterials and electrochemical sensors. It also belongs on the reference shelves of academic researchers and industrial scientists in the fields of nanochemistry and nanomaterials, materials chemistry, material science, electrochemistry, analytical chemistry, physical chemistry, and biochemistry. Book jacket.
    Bibliographic references
    Includes bibliographical references and index.
    Contents
    • 1 Electroanalysis with Carbon Film-based Electrodes / Shunsuke Shiba Shiba, Shunsuke, Tomoyuki Kamata Kamata, Tomoyuki, Dai Kato Kato, Dai, Osamu Niwa Niwa, Osamu 1
    • 1.1 Introduction 1
    • 1.2 Fabrication of Carbon Film Electrodes 2
    • 1.3 Electrochemical Performance and Application of Carbon Film Electrodes 4
    • 1.3.1 Pure and Oxygen Containing Groups Terminated Carbon Film Electrodes 5
    • 1.3.2 Nitrogen Containing or Nitrogen Terminated Carbon Film Electrodes 8
    • 1.3.3 Fluorine Terminated Carbon Film Electrode 11
    • 1.3.4 Metal Nanoparticles Containing Carbon Film Electrode 13
    • References 19
    • 2 Carbon Nanofibers for Electroanalysis / Tianyan You You, Tianyan, Dong Liu Liu, Dong, Libo Li Li, Libo 27
    • 2.1 Introduction 27
    • 2.2 Techniques for the Preparation of CNFs 28
    • 2.3 CNFs Composites 30
    • 2.3.1 NCNFs 30
    • 2.3.2 Metal nanoparticles-loaded CNFs 32
    • 2.4 Applications of CNFs for electroanalysis 32
    • 2.4.1 Technologies for electroanalysis 32
    • 2.4.2 Non-enzymatic biosensors 33
    • 2.4.3 Enzyme-based biosensors 40
    • 2.4.4 CNFs-based immunosensors 44
    • 2.5 Conclusions 47
    • References 47
    • 3 Carbon Nanomaterials for Neuroanalytical Chemistry / Cheng Yang Yang, Cheng, B. Jill Venton Venton, B. Jill 55
    • 3.1 Introduction 55
    • 3.2 Carbon Nanomaterial-based Microelectrodes and Nanoelectrodes for Neurotransmitter Detection 57
    • 3.2.1 Carbon Nanomaterial-based Electrodes Using Dip Coating/Drop Casting Methods 57
    • 3.2.2 Direct Growth of Carbon Nanomaterials on Electrode Substrates 59
    • 3.2.3 Carbon Nanotube Fiber Microelectrodes 61
    • 3.2.4 Carbon Nanoelectrodes and Carbon Nanomaterial-based Electrode Array 62
    • 3.2.5 Conclusions 64
    • 3.3 Challenges and Future Directions 65
    • 3.3.1 Correlation Between Electrochemical Performance and Carbon Nanomaterial Surface Properties 65
    • 3.3.2 Carbon Nanomaterial-based Anti-fouling Strategies for in vivo Measurements of Neurotransmitters 67
    • 3.3.3 Reusable Carbon Nanomaterial-based Electrodes 70
    • 3.4 Conclusions 73
    • References 74
    • 4 Carbon and Graphene Dots for Electrochemical Sensing / Ying Chen Chen, Ying, Lingling Li Li, Lingling, Jun-Jie Zhu Zhu, Jun-Jie 85
    • 4.1 Introduction 85
    • 4.2 CDs and GDs for Electrochemical Sensors 86
    • 4.2.1 Substrate Materials in Electrochemical Sensing 86
    • 4.2.1.1 Immobilization and Modification Function 86
    • 4.2.1.2 Electrocatalysis Function 87
    • 4.2.2 Carriers for Probe Fabrication 93
    • 4.2.3 Signal Probes for Electrochemical Performance 95
    • 4.2.4 Metal Ions Sensing 96
    • 4.2.5 Small Molecule Sensing 97
    • 4.2.6 Protein Sensing 100
    • 4.2.7 DNA/RNA Sensing 101
    • 4.3 Electrochemiluminescence Sensors 101
    • 4.4 Photoelectrochemical Sensing 107
    • 4.5 Conclusions 110
    • References 110
    • 5 Electroanalytical Applications of Graphene / Edward P. Randviir Randviir, Edward P., Craig E. Banks Banks, Craig E. 119
    • 5.1 Introduction 119
    • 5.2 The Birth of Graphene 120
    • 5.3 Types of Graphene 122
    • 5.4 Electroanalytical Properties of Graphene 124
    • 5.4.1 Free-standing 3D Graphene Foam 124
    • 5.4.2 Chemical Vapour Deposition and Pristine Graphene 125
    • 5.4.3 Graphene Screen-printed Electrodes 127
    • 5.4.4 Solution-based Graphene 129
    • 5.5 Future Outlook for Graphene Electroanalysis 132
    • References 133
    • 6 Graphene/gold Nanoparticles for Electrochemical Sensing / Sabine Szunerits Szunerits, Sabine, Qian Wang Wang, Qian, Alina Vasiiescu Vasiiescu, Alina, Musen LiandRabah Boukherroub Boukherroub, Musen LiandRabah 139
    • 6.1 Introduction 139
    • 6.2 Interfacing Gold Nanoparticles with Graphene 141
    • 6.2.1 Ex-situ Au NPs Decoration of Graphene 142
    • 6.2.2 In-situ Au NPs Decoration of Graphene 143
    • 6.2.3 Electrochemical Reduction 145
    • 6.3 Electrochemical Sensors Based on Graphene/Au NPs Hybrids 146
    • 6.3.1 Detection of Neurotransmitters: Dopamine, Serotonin 146
    • 6.3.2 Ractopamine 151
    • 6.3.3 Glucose 152
    • 6.3.4 Detection of Steroids: Cholesterol, Estradiol 153
    • 6.3.5 Detection of Antibacterial Agents 154
    • 6.3.6 Detection of Explosives Such as 2, 4, 6-trinitrotoluene (TNT) 154
    • 6.3.7 Detection of NADH 154
    • 6.3.8 Detection of Hydrogen Peroxide 155
    • 6.3.9 Heavy Metal Ions 156
    • 6.3.10 Amino Acid and DNA Sensing 156
    • 6.3.11 Detection of Model Protein Biomarkers 157
    • 6.4 Conclusion 161
    • Acknowledgement 162
    • References 162
    • 7 Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-structured Platforms / Sanaz Pilehvar Pilehvar, Sanaz, Karolien De Wael Wael, Karolien De 173
    • 7.1 Introduction 173
    • 7.1.1 Basics and History of Fullerene (C60) 174
    • 7.1.2 Synthesis of Fullerene 175
    • 7.1.3 Functionalization of Fullerene 175
    • 7.2 Modification of Electrodes with Fullerenes 176
    • 7.2.1 Fullerene (C60)-DNA Hybrid 177
    • 7.2.1.1 Interaction of DNA with Fullerene 178
    • 7.2.1.2 Fullerene for DNA Biosensing 179
    • 7.2.1.3 Fullerene as an Immobilization Platform 179
    • 7.2.2 Fullerene(C60)-Antibody Hybrid 183
    • 7.2.3 FuIlerene(C60)-Protein Hybrid 185
    • 7.2.3.1 Enzymes 185
    • 7.2.3.2 Redox Active Proteins 188
    • 7.3 Conclusions and Future Prospects 190
    • References 191
    • 8 Micro- and Nano-structured Diamond in Electrochemistry: Fabrication and Application / Fang Gao Gao, Fang, Christoph E. Nebel Nebel, Christoph E.
    • 8.1 Introduction 197
    • 8.2 Fabrication Method of Diamond Nanostructures 198
    • 8.2.1 Reactive Ion Etching 198
    • 8.2.2 Templated Growth 200
    • 8.2.3 Surface Anisotropic Etching by Metal Catalyst 204
    • 8.2.4 High Temperature Surface Etching 204
    • 8.2.5 Selective Material Removal 206
    • 8.2.6 Sp²-Carbon Assisted Growth of Diamond Nanostructures 207
    • 8.2.7 High Pressure High Temperature (HPHT) Methods 209
    • 8.3 Application of Diamond Nanostructures in Electrochemistry 209
    • 8.3.1 Biosensors Based on Nanostructured Diamond 209
    • 8.3.2 Energy Storage Based on Nanostructured Diamond 211
    • 8.3.3 Catalyst Based on Nanostructured Diamond 214
    • 8.3.4 Diamond Porous Membranes for Chemical/Electrochemical Separation Processes 216
    • 8.4 Summary and Outlook 218
    • Acronyms 219
    • References 219
    • 9 Electroanalysis with C3N4 and SiC Nanostructures / Mandana Amiri Amiri, Mandana 227
    • 9.1 Introduction to g-C₃N₄ 227
    • 9.2 Synthesis of g-C₃N₄ 229
    • 9.3 Electrocatalytic Behavior of g-C₃N₄ 231
    • 9.4 Electroanalysis with g-C₃N₄ Nanostructures 233
    • 9.4.1 Electrochemiluminescent Sensors 233
    • 9.4.2 Photo-electrochemical Detection Schemes 236
    • 9.4.3 Voltammetric Determinations 239
    • 9.5 Introduction to SiC 241
    • 9.6 Synthesis of SiC Nanostructures 243
    • 9.7 Electrochemical Behavior of SiC 244
    • 9.8 SiC Nanostructures in Electroanalysis 246
    • 9.9 Conclusion 250
    • Acknowledgements 250
    • References 250.
    ISBN
    • 9781119243908 ((hardcover))
    • 1119243904 ((hardcover))
    LCCN
    2017016745
    OCLC
    981118491
    Other standard number
    • 40027709207
    Statement on language in description
    Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
    Other views
    Staff view

    Supplementary Information