Computational methods for electromagnetic and optical systems / John M. Jarem, Partha P. Banerjee.

Author
Jarem, John M., 1948- [Browse]
Format
Book
Language
English
Εdition
2nd ed.
Published/​Created
Boca Raton, FL : CRC Press, c2011.
Description
xv, 416 p. : ill. ; 27 cm.

Availability

Copies in the Library

Location Call Number Status Location Service Notes
Harold P. Furth Plasma Physics Library - Stacks QC760 .J47 2011 Browse related items Request

    Details

    Subject(s)
    Series
    • Optical science and engineering (CRC Press) ; 149. [More in this series]
    • Optical science and engineering ; 149
    Summary note
    "This text introduces and examines a variety of spectral computational techniques - including k-space theory, Floquet theory and beam propagation - that are used to analyze electromagnetic and optical problems. The book also presents a solution to Maxwell's equations from a set of first order coupled partial differential equations"--Provided by publisher.
    Bibliographic references
    Includes bibliographical references and index.
    Contents
    • 3.3.1.Constitutive Relations and Frequency Dependence
    • 3.3.2.Constitutive Relations for Chiral Media
    • 3.4.Plane Wave Propagation through Linear Homogeneous Isotropic Media
    • 3.4.1.Dispersive Media
    • 3.4.2.Chiral Media
    • 3.5.Power Flow, Stored Energy, Energy Velocity, Group Velocity, and Phase Velocity
    • 3.6.Metamaterials and Negative Index Media
    • 3.6.1.Beam Propagation in NIMs
    • 3.7.Propagation through Photonic Band Gap Structures: The Transfer Matrix Method
    • 3.7.1.Periodic PIM-NIM Structures
    • 3.7.2.EM Propagation in Complex Structures
    • Problems
    • References
    • 4.1.Introduction
    • 4.2.State Variable Analysis of an Isotropic Layer
    • 4.2.1.Introduction
    • 4.2.2.Analysis
    • 4.2.3.Complex Poynting Theorem
    • 4.2.4.State Variable Analysis of an Isotropic Layer in Free Space
    • 4.2.5.State Variable Analysis of a Radar Absorbing Layer
    • 4.2.6.State Variable Analysis of a Source in Isotropic Layered Media
    • 4.3.State Variable Analysis of an Anisotropic Layer
    • 4.3.1.Introduction
    • 4.3.2.Basic Equations
    • 4.3.3.Numerical Results
    • 4.4.One-Dimensional k-Space State Variable Solution
    • 4.4.1.Introduction
    • 4.4.2.k-Space Formulation
    • 4.4.3.Ground Plane Slot Waveguide System
    • 4.4.4.Ground Plane Slot Waveguide System, Numerical Results
    • 5.1.Introduction
    • 5.2.H-Mode Planar Diffraction Grating Analysis
    • 5.2.1.Full-Field Formulation
    • 5.2.2.Differential Equation Method
    • 5.2.3.Numerical Results
    • 5.2.4.Diffraction Grating Mirror
    • 5.3.Application of RCWA and the Complex Poynting Theorem to E-Mode Planar Diffraction Grating Analysis
    • 5.3.1.E-Mode RCWA Formulation
    • 5.3.2.Complex Poynting Theorem
    • 5.3.2.1.Sample Calculation of PuWE
    • 5.3.2.2.Other Poynting Theorem Integrals
    • 5.3.2.3.Simplification of Results and Normalization
    • 5.3.3.Numerical Results
    • 5.4.Multilayer Analysis of E-Mode Diffraction Gratings
    • 5.4.1.E-Mode Formulation
    • 5.4.2.Numerical Results
    • 5.5.Crossed Diffraction Grating
    • 5.5.1.Crossed Diffraction Grating Formulation
    • 5.5.2.Numerical Results
    • References --
    • 6.1.Introduction to Photorefractive Materials
    • 6.2.Dynamic Nonlinear Model for Diffusion-Controlled PR Materials
    • 6.3.Approximate Analysis
    • 6.3.1.Numerical Algorithm
    • 6.3.2.TE Numerical Simulation Results
    • 6.3.3.TM Numerical Simulation Results
    • 6.3.4.Discussion of Results from Approximate Analysis
    • 6.4.Exact Analysis
    • 6.4.1.Finite Difference Kukhtarev Analysis
    • 6.4.2.TM Numerical Simulation Results
    • 6.5.Reflection Gratings
    • 6.5.1.RCWA Optical Field Analysis
    • 6.5.2.Material Analysis
    • 6.5.3.Numerical Results
    • 6.6.Conclusion
    • 7.1.Introduction
    • 7.2.Rigorous Coupled Wave Analysis Circular Cylindrical Systems
    • 7.3.Rigorous Coupled Wave Analysis Mathematical Formulation
    • 7.3.1.Introduction
    • 7.3.2.Basic Equations
    • 7.3.3.Numerical Results
    • 7.4.Anisotropic Cylindrical Scattering
    • 7.4.1.Introduction
    • 7.4.2.State Variable Analysis
    • 7.4.3.Numerical Results
    • 7.5.Spherical Inhomogeneous Analysis
    • 7.5.1.Introduction
    • 7.5.2.Rigorous Coupled Wave Theory Formulation
    • 7.5.3.Numerical Results
    • 8.1.Introduction
    • 8.2.RCWA Bipolar Coordinate Formulation
    • 8.2.1.Bipolar and Eccentric Circular Cylindrical, Scattering Region Coordinate Description
    • 8.2.2.Bipolar RCWA State Variable Formulation
    • 8.2.3.Second-Order Differential Matrix Formulation
    • 8.2.4.Thin-Layer, Bipolar Coordinate Eigenfunction Solution
    • 8.3.Bessel Function Solutions in Homogeneous Regions of Scattering System
    • 8.4.Thin-Layer SV Solution in the Inhomogeneous Region of the Scattering System
    • 8.5.Matching of EM Boundary Conditions at Interior-Exterior Interfaces of the Scattering System
    • 8.5.1.Bipolar and Circular Cylindrical Coordinate Relations
    • 8.5.2.Details of Region 2 (Inhomogenous Region) Region 3 (Homogenous Interior Region) EM Boundary Value Matching
    • 8.5.3.Region 0 (Homogenous Exterior Region) Region 2 (Inhomogenous Region) EM Boundary Value Matching
    • 8.5.4.Details of Layer-to-Layer EM Boundary Value Matching in the Inhomogeneous Region
    • 8.5.5.Inhomogeneous Region Ladder-Matrix
    • 8.6.Region 1 Region 3 Bessel-Fourier Coefficient Transfer Matrix
    • 8.7.Overall System Matrix
    • 8.8.Alternate Forms of the Bessel-Fourier Coefficient Transfer Matrix
    • 8.9.Bistatic Scattering Width
    • 8.10.Validation of Numerical Results
    • 8.11.Numerical Results, Examples of Scattering from Homogeneous and Inhomogeneous Material Objects
    • 8.12.Error and Convergence Analysis
    • 8.13.Summary, Conclusions, and Future Work
    • Appendix 8.A
    • Appendix 8.B
    • 9.1.Introduction
    • 9.2.Case Study I: Fourier Series Expansion, Eigenvalue and Eigenfunction Analysis, and Transfer Matrix Analysis --
    • 9.3.Case Study II: Comparison of KPE BA, BC Validation Methods, and SV Methods for Relatively Small Diameter Scattering Objects
    • 9.4.Case Study III: Comparison of BA, BC, and SV Methods for Gradually, Stepped-Up, Index Profile Scattering Objects
    • 9.5.Case Study IV: Comparison of BA, BC, and SV Methods for Mismatched, Index Profile, Scattering Objects
    • 9.6.Case Study V: Comparison of BA, BC, and SV Methods for Gradually, Stepped-Up, Index Scattering Objects with High Index Core
    • 9.7.Case Study VI: Calculation and Convergence Analysis of EM Fields of an Inhomogeneous Region Material Object Using the SV Method, Δepsilon = 1, α = 5.5, Λ = 0, Example
    • 9.8.Case Study VII: Calculation and Convergence Analysis of EM Fields of an Inhomogeneous Region Material Object Using the SV Method, Δepslon = 0.4, α = 5.5, Λ = 0 Example
    • 9.9.Case Study VIII: Comparison of Homogeneous and Inhomogeneous Region Bistatic Line Widths
    • 9.10.Case Study IX: Conservation of Power Analysis
    • Appendix 9.A: Interpolation Equations.
    ISBN
    • 9781439804223 (hardback)
    • 1439804222 (hardback)
    LCCN
    2010045338
    OCLC
    262430646
    Statement on language in description
    Princeton University Library aims to describe library materials in a manner that is respectful to the individuals and communities who create, use, and are represented in the collections we manage. Read more...
    Other views
    Staff view